5 Controlling Processes

A process is the abstraction used by UNIX and Linux to represent a running pro-
gram. It’s the object through which a program’s use of memory, processor time,
and I/O resources can be managed and monitored.

It is part of the UNIX philosophy that as much work as possible be done within
the context of processes, rather than handled specially by the kernel. System and
user processes all follow the same rules, so you can use a single set of tools to
control them both.

5.1 COMPONENTS OF A PROCESS

A process consists of an address space and a set of data structures within the ker-
nel. The address space is a set of memory pages' that the kernel has marked for
the process’s use. It contains the code and libraries that the process is executing,
the process’s variables, its stacks, and various extra information needed by the ker-
nel while the process is running. Because UNIX and Linux are virtual memory
systems, there is no correlation between a page’s location within a process’s ad-
dress space and its location inside the machine’s physical memory or swap space.

1. Pages are the units in which memory is managed, usually between 1KiB and 8KiB in size.

120

From the Library of Wow! eBook .Com

PPID: parent PID 121

The kernel’s internal data structures record various pieces of information about
each process. Here are some of the more important of these:

The process’s address space map

The current status of the process (sleeping, stopped, runnable, etc.)
The execution priority of the process

Information about the resources the process has used

Information about the files and network ports the process has opened
The process’s signal mask (a record of which signals are blocked)

The owner of the process

An execution thread, usually known simply as a thread, is the result of a fork in
execution within a process. A thread inherits many of the attributes of the process
that contains it (such as the process’s address space), and multiple threads can
execute concurrently within a single process under a model called multithreading.

Concurrent execution is simulated by the kernel on old-style uniprocessor sys-
tems, but on multicore and multi-CPU architectures the threads can run simulta-
neously on different cores. Multithreaded applications such as BIND and Apache
benefit the most from multicore systems since the applications can work on more
than one request simultaneously. All our example operating systems support mul-
tithreading.

Many of the parameters associated with a process directly affect its execution: the
amount of processor time it gets, the files it can access, and so on. In the following
sections, we discuss the meaning and significance of the parameters that are most
interesting from a system administrator’s point of view. These attributes are com-
mon to all versions of UNIX and Linux.

PID: process ID number

The kernel assigns a unique ID number to every process.” Most commands and
system calls that manipulate processes require you to specify a PID to identify the
target of the operation. PIDs are assigned in order as processes are created.

PPID: parent PID

Neither UNIX nor Linux has a system call that initiates a new process running a
particular program. Instead, an existing process must clone itself to create a new
process. The clone can then exchange the program it’s running for a different one.

When a process is cloned, the original process is referred to as the parent, and the
copy is called the child. The PPID attribute of a process is the PID of the parent
from which it was cloned.’

2. As pointed out by our reviewer Jon Corbet, Linux kernel 2.6.24 introduced process ID namespaces,
which allow multiple processes with the same PID to exist concurrently. This feature was implemented
to support container-based virtualization.

3. At least initially. If the original parent dies, init (process 1) becomes the new parent. See page 124.

From the Library of Wow! eBook .Com

122 Chapter 5 Controlling Processes

The parent PID is a useful piece of information when you're confronted with an
unrecognized (and possibly misbehaving) process. Tracing the process back to its
origin (whether a shell or another program) may give you a better idea of its pur-
pose and significance.

UID and EUID: real and effective user ID

See page 180 for A process’s UID is the user identification number of the person who created it, or
more information more accurately, it is a copy of the UID value of the parent process. Usually, only
about UIDs. « » .

the creator (aka the “owner”) and the superuser can manipulate a process.

The EUID is the “effective” user ID, an extra UID used to determine what re-
sources and files a process has permission to access at any given moment. For
most processes, the UID and EUID are the same, the usual exception being pro-
grams that are setuid.

Why have both a UID and an EUID? Simply because it’s useful to maintain a
distinction between identity and permission, and because a setuid program may
not wish to operate with expanded permissions all the time. On most systems, the
effective UID can be set and reset to enable or restrict the additional permissions
it grants.

Most systems also keep track of a “saved UID,” which is a copy of the process’s
EUID at the point at which the process first begins to execute. Unless the process
takes steps to obliterate this saved UID, it remains available for use as the real or
effective UID. A conservatively written setuid program can therefore renounce its
special privileges for the majority of its execution, accessing them only at the spe-
cific points at which extra privileges are needed.

Linux also defines a nonstandard FSUID process parameter that controls the de-
termination of filesystem permissions. It is infrequently used outside the kernel
and is not portable to other UNIX systems.

GID and EGID: real and effective group ID

See page 181 for The GID is the group identification number of a process. The EGID is related to

more information the GID in the same way that the EUID is related to the UID in that it can be

about groups. “upgraded” by the execution of a setgid program. A saved GID is maintained. It is
similar in intent to the saved UID.

The GID attribute of a process is largely vestigial. For purposes of access determi-
nation, a process can be a member of many groups at once. The complete group
list is stored separately from the distinguished GID and EGID. Determinations of
access permissions normally take into account the EGID and the supplemental
group list, but not the GID.

The only time at which the GID really gets to come out and play is when a process
creates new files. Depending on how the filesystem permissions have been set,
new files may adopt the GID of the creating process. See page 154 for details.

From the Library of Wow! eBook .Com

5.2

The life cycle of a process 123

Niceness

A process’s scheduling priority determines how much CPU time it receives. The
kernel uses a dynamic algorithm to compute priorities, allowing for the amount of
CPU time that a process has recently consumed and the length of time it has been
waiting to run. The kernel also pays attention to an administratively set value
that’s usually called the “nice value” or “niceness,” so called because it tells how
nice you are planning to be to other users of the system. We discuss niceness in
detail on page 129.

In an effort to provide better support for low-latency applications, Linux has
added “scheduling classes” to the traditional UNIX scheduling model. There are
currently three classes, and each process is assigned to one class. Unfortunately,
the real-time classes are neither widely used nor well supported from the com-
mand line. System processes use the traditional (niceness) scheduler, which is the
only one we discuss in this book. See realtimelinuxfoundation.org for more dis-
cussion of issues related to real-time scheduling.

Control terminal

Most nondaemon processes have an associated control terminal. The control ter-
minal determines default linkages for the standard input, standard output, and
standard error channels. When you start a command from the shell, your termi-
nal window normally becomes the process’s control terminal. The concept of a
control terminal also affects the distribution of signals, which are discussed start-
ing on page 124.

THE LIFE CYCLE OF A PROCESS

To create a new process, a process copies itself with the fork system call. fork
creates a copy of the original process; that copy is largely identical to the parent.
The new process has a distinct PID and has its own accounting information.

fork has the unique property of returning two different values. From the child’s
point of view, it returns zero. The parent receives the PID of the newly created
child. Since the two processes are otherwise identical, they must both examine the
return value to figure out which role they are supposed to play.

After a fork, the child process will often use one of the exec family of system calls
to begin the execution of a new program.* These calls change the program that the
process is executing and reset the memory segments to a predefined initial state.
The various forms of exec differ only in the ways in which they specify the com-
mand-line arguments and environment to be given to the new program.

When the system boots, the kernel autonomously creates and installs several pro-
cesses. The most notable of these is init, which is always process number 1. init is
responsible for executing the system’s startup scripts, although the exact manner

4. Actually, all but one are library routines rather than system calls.

From the Library of Wow! eBook .Com

124 Chapter 5 Controlling Processes

in which this is done differs slightly between UNIX and Linux. All processes other
than the ones the kernel creates are descendants of init. See Chapter 3 for more
information about booting and the init daemon.

init also plays another important role in process management. When a process
completes, it calls a routine named _exit to notify the kernel that it is ready to die.
It supplies an exit code (an integer) that tells why it’s exiting. By convention, 0 is
used to indicate a normal or “successful” termination.

Before a process can be allowed to disappear completely, the kernel requires that
its death be acknowledged by the process’s parent, which the parent does with a
call to wait. The parent receives a copy of the child’s exit code (or an indication of
why the child was killed if the child did not exit voluntarily) and can also obtain a
summary of the child’s use of resources if it wishes.

This scheme works fine if parents outlive their children and are conscientious
about calling wait so that dead processes can be disposed of. If the parent dies
first, however, the kernel recognizes that no wait will be forthcoming and adjusts
the process to make the orphan a child of init. init politely accepts these orphaned
processes and performs the wait needed to get rid of them when they die.

5.3 SIGNALS

Signals are process-level interrupt requests. About thirty different kinds are de-
fined, and they’re used in a variety of ways:

e They can be sent among processes as a means of communication.

e They can be sent by the terminal driver to kill, interrupt, or suspend
processes when keys such as <Control-C> and <Control-Z> are typed.’

e They can be sent by an administrator (with kill) to achieve various ends.

e They can be sent by the kernel when a process commits an infraction
such as division by zero.

e They can be sent by the kernel to notify a process of an “interesting”
condition such as the death of a child process or the availability of data
on an I/O channel.

A core dump is When a signal is received, one of two things can happen. If the receiving process
a processs metmory has designated a handler routine for that particular signal, the handler is called
with information about the context in which the signal was delivered. Otherwise,
the kernel takes some default action on behalf of the process. The default action
varies from signal to signal. Many signals terminate the process; some also gener-
ate a core dump.

image. It can be used
for debugging.

5. The functions of <Control-Z> and <Control-C> can be reassigned to other keys with the stty com-
mand, but this is rare in practice. In this chapter we refer to them by their conventional bindings.

From the Library of Wow! eBook .Com

Signals 125

Specifying a handler routine for a signal within a program is referred to as catch-
ing the signal. When the handler completes, execution restarts from the point at
which the signal was received.

To prevent signals from arriving, programs can request that they be either ignored
or blocked. A signal that is ignored is simply discarded and has no effect on the
process. A blocked signal is queued for delivery, but the kernel doesn’t require the
process to act on it until the signal has been explicitly unblocked. The handler for
a newly unblocked signal is called only once, even if the signal was received sev-
eral times while reception was blocked.

Table 5.1 lists some signals with which all administrators should be familiar. The
uppercase convention for the names derives from C language tradition. You might
also see signal names written with a SIG prefix (e.g., SIGHUP) for similar reasons.

Table 5.1 Signals every administrator should know®

Can Can Dump

Name Description Default catch? block? core?
1 HUP Hangup Terminate Yes Yes No
2 INT Interrupt Terminate Yes Yes No
3 QuiTt Quit Terminate Yes Yes Yes
9 KILL Kill Terminate No No No
- BUS Bus error Terminate Yes Yes Yes
11 SEGV Segmentation fault Terminate Yes Yes Yes
15 TERM Software termination Terminate Yes Yes No
-b sTOP Stop Stop No No No
> TSTP Keyboard stop Stop Yes Yes No
- CONT Continue after stop Ignore Yes No No
-* WINCH Window changed Ignore Yes Yes No
-® USR1 User-defined #1 Terminate Yes Yes No
-» USR2 User-defined #2 Terminate Yes Yes No

a. A list of signal names and numbers is also available from the bash built-in command kill -1.
b. Varies among systems. See /usr/include/signal.h or man signal for more specific information.

Other signals, not shown in Table 5.1, mostly report obscure errors such as “illegal
instruction” The default handling for signals like that is to terminate with a core
dump. Catching and blocking are generally allowed because some programs may
be smart enough to try to clean up whatever problem caused the error before
continuing.

The BUS and SEGYV signals are also error signals. We've included them in the
table because they’re so common: when a program crashes, it’s usually one of
these two signals that finally brings it down. By themselves, the signals are of no

From the Library of Wow! eBook .Com

126 Chapter 5 Controlling Processes

specific diagnostic value. Both of them indicate an attempt to use or access mem-
ory improperly.®

The signals named KILL and STOP cannot be caught, blocked, or ignored. The
KILL signal destroys the receiving process, and STOP suspends its execution until
a CONT signal is received. CONT may be caught or ignored, but not blocked.

TSTP is a “soft” version of STOP that might be best described as a request to stop.
It’s the signal generated by the terminal driver when <Control-Z> is typed on the
keyboard. Programs that catch this signal usually clean up their state, then send
themselves a STOP signal to complete the stop operation. Alternatively, programs
can ignore TSTP to prevent themselves from being stopped from the keyboard.

Terminal emulators send a WINCH signal when their configuration parameters
(such as the number of lines in the virtual terminal) change. This convention al-
lows emulator-savvy programs such as text editors to reconfigure themselves au-
tomatically in response to changes. If you can’t get windows to resize properly,
make sure that WINCH is being generated and propagated correctly.

The signals KILL, INT, TERM, HUP, and QUIT all sound as if they mean approx-
imately the same thing, but their uses are actually quite different. It’s unfortunate
that such vague terminology was selected for them. Here’s a decoding guide:

e KILL is unblockable and terminates a process at the kernel level. A pro-
cess can never actually receive this signal.

e INT is sent by the terminal driver when you type <Control-C>. It’s a
request to terminate the current operation. Simple programs should quit
(if they catch the signal) or simply allow themselves to be killed, which is
the default if the signal is not caught. Programs that have an interactive
command line (such as a shell) should stop what they’re doing, clean up,
and wait for user input again.

e TERM is a request to terminate execution completely. It's expected that
the receiving process will clean up its state and exit.

e HUP has two common interpretations. First, it’s understood as a reset
request by many daemons. If a daemon is capable of rereading its config-
uration file and adjusting to changes without restarting, a HUP can gen-
erally be used to trigger this behavior.

6. More specifically, bus errors result from violations of alignment requirements or the use of nonsensi-
cal addresses. Segmentation violations represent protection violations such as attempts to write to
read-only portions of the address space.

7. Which may be easier said than done. The terminal emulator (e.g., xterm), terminal driver, and user-
level commands may all have a role in propagating SIGWINCH. Common problems include sending
the signal to a terminal’s foreground process only (rather than to all processes associated with the ter-
minal) and failing to propagate notification of a size change across the network to a remote computer.
Protocols such as Telnet and SSH explicitly recognize local terminal size changes and communicate
this information to the remote host. Simpler protocols (e.g., direct serial lines) cannot do this.

From the Library of Wow! eBook .Com

5.4

kill: send signals 127

Second, HUP signals are sometimes generated by the terminal driver in
an attempt to “clean up” (i.e., kill) the processes attached to a particular
terminal. This behavior is largely a holdover from the days of wired ter-
minals and modem connections, hence the name “hangup.”

Shells in the C shell family (tcsh et al.) usually make background pro-
cesses immune to HUP signals so that they can continue to run after the
user logs out. Users of Bourne-ish shells (ksh, bash, etc.) can emulate
this behavior with the nohup command.

e QUIT is similar to TERM, except that it defaults to producing a core
dump if not caught. A few programs cannibalize this signal and interpret
it to mean something else.

The signals USRI and USR2 have no set meaning. They’re available for programs
to use in whatever way theyd like. For example, the Apache web server interprets
the USRI signal as a request to gracefully restart.

KILL: SEND SIGNALS

As its name implies, the kill command is most often used to terminate a process.
kill can send any signal, but by default it sends a TERM. kill can be used by nor-
mal users on their own processes or by root on any process. The syntax is

kill [-signal] pid

where signal is the number or symbolic name of the signal to be sent (as shown in
Table 5.1) and pid is the process identification number of the target process.

A kill without a signal number does not guarantee that the process will die, be-
cause the TERM signal can be caught, blocked, or ignored. The command

kill -9 pid

“guarantees” that the process will die because signal 9, KILL, cannot be caught.
Use kill -9 only if a polite request fails. We put quotes around “guarantees” be-
cause processes can occasionally become so wedged that even KILL does not af-
fect them (usually because of some degenerate I/O vapor lock such as waiting for
a disk that has stopped spinning). Rebooting is usually the only way to get rid of
these processes.

The killall command performs wildly different functions on UNIX and Linux.
Under Linux, killall kills processes by name. For example, the following com-
mand kills all Apache web server processes:

ubuntu$ sudo killall httpd

The standard UNIX killall command that ships with Solaris, HP-UX, and AIX
takes no arguments and simply kills all the current user’s processes. Running it as
root kills init and shuts down the machine. Oops.

From the Library of Wow! eBook .Com

128 Chapter 5 Controlling Processes

The pgrep and pkill commands for Solaris, HP-UX, and Linux (but not AIX)
search for processes by name (or other attributes, such as EUID) and display or
signal them, respectively. For example, the following command sends a TERM
signal to all processes running as the user ben:

$ sudo pkill -u ben

5.5 PROCESS STATES

A process is not automatically eligible to receive CPU time just because it exists.
You need to be aware of the four execution states listed in Table 5.2.

Table 5.2 Process states

State Meaning

Runnable The process can be executed.

Sleeping The process is waiting for some resource.

Zombie The process is trying to die.

Stopped The process is suspended (not allowed to execute).

A runnable process is ready to execute whenever CPU time is available. It has
acquired all the resources it needs and is just waiting for CPU time to process its
data. As soon as the process makes a system call that cannot be immediately com-
pleted (such as a request to read part of a file), the kernel puts it to sleep.

Sleeping processes are waiting for a specific event to occur. Interactive shells and
system daemons spend most of their time sleeping, waiting for terminal input or
network connections. Since a sleeping process is effectively blocked until its re-
quest has been satisfied, it will get no CPU time unless it receives a signal or a
response to one of its I/O requests.

Some operations cause processes to enter an uninterruptible sleep state. This state
is usually transient and not observed in ps output (indicated by a D in the STAT
column; see Table 5.4 on page 132). However, a few degenerate situations can
cause it to persist. The most common cause involves server problems on an NFS
filesystem mounted with the “hard” option. Since processes in the uninterruptible
sleep state cannot be roused even to service a signal, they cannot be killed. To get
rid of them, you must fix the underlying problem or reboot.

Zombies are processes that have finished execution but have not yet had their
status collected. If you see zombies hanging around, check their PPIDs with ps to
find out where they’re coming from.

Stopped processes are administratively forbidden to run. Processes are stopped on
receipt of a STOP or TSTP signal and are restarted with CONT. Being stopped is
similar to sleeping, but there’s no way for a process to get out of the stopped state
other than having some other process wake it up (or kill it).

From the Library of Wow! eBook .Com

5.6

nice and renice: influence scheduling priority 129

NICE AND RENICE: INFLUENCE SCHEDULING PRIORITY

The “niceness” of a process is a numeric hint to the kernel about how the process
should be treated in relation to other processes contending for the CPU. The
strange name is derived from the fact that it determines how nice you are going to
be to other users of the system. A high nice value means a low priority for your
process: you are going to be nice. A low or negative value means high priority: you
are not very nice.

The range of allowable niceness values varies among systems. The most common
range is -20 to +19. Some systems use a range of a similar size beginning at 0
instead of a negative number (typically 0 to 39). The ranges used on our example
systems are shown in Table 5.3 on the next page.

Despite their numeric differences, all systems handle nice values in much the
same way. Unless the user takes special action, a newly created process inherits
the nice value of its parent process. The owner of the process can increase its nice
value but cannot lower it, even to return the process to the default niceness. This
restriction prevents processes with low priority from bearing high-priority chil-
dren. The superuser may set nice values arbitrarily.

It’s rare to have occasion to set priorities by hand these days. On the puny systems
of the 1970s and 80s, performance was significantly affected by which process was
on the CPU. Today, with more than adequate CPU power on every desktop, the
scheduler does a good job of servicing all processes. The addition of scheduling
classes gives developers additional control when fast response is essential.

I/O performance has not kept up with increasingly fast CPUs, and the major bot-
tleneck on most systems has become the disk drives. Unfortunately, a process’s
nice value has no effect on the kernel's management of its memory or I/O; high-
nice processes can still monopolize a disproportionate share of these resources.

A process’s nice value can be set at the time of creation with the nice command
and adjusted later with the renice command. nice takes a command line as an
argument, and renice takes a PID or (sometimes) a username.

Some examples:

$ nice -n 5 ~/bin/longtask // Lowers priority (raise nice) by 5
$ sudo renice -5 8829 // Sets nice value to -5
$ sudo renice 5 -u boggs // Sets nice value of boggs’s procs to 5

Unfortunately, there is little agreement among systems about how the desired pri-
orities should be specified; in fact, even nice and renice from the same system
usually don't agree. Some commands want a nice value increment, whereas others
want an absolute nice value. Some want their nice values preceded by a dash. Oth-
ers want a flag (-n), and some just want a value.

To complicate things, a version of nice is built into the C shell and some other
common shells (but not bash). If you don't type the full path to nice, you’ll get the

From the Library of Wow! eBook .Com

130 Chapter 5 Controlling Processes

shell’s version rather than the operating system’s. This duplication can be confus-
ing because shell-nice and command-nice use different syntax: the shell wants its
priority increment expressed as +incr or -incr, but the stand-alone command
wants an -n flag followed by the priority increment.®

Table 5.3 summarizes all these variations. A prio is an absolute nice value, while
an incr is relative to the niceness of the shell from which nice or renice is run.
Wherever an -incr or a -prio is called for, you can use a double dash to enter nega-
tive values (e.g., --10). Only the shell nice understands plus signs (in fact, it re-
quires them); leave them out in all other circumstances.

Table 5.3 How to express priorities for various versions of nice and renice

System Range OS nice csh nice renice

Linux -20t0o 19 -incror-nincr +incror-incr prio

Solaris 0to39 -incror-nincr +incror-incr incror-nincr
HP-UX 0to39 -prioor-nprio +incror-incr -n prio®

AIX -20t0 19 -incror-nincr +incror-incr -nincr

QU

. Uses absolute priority, but adds 20 to the value you specify.

The most commonly niced process in the modern world is ntpd, the clock syn-
chronization daemon. Since promptness is critical to its mission, it usually runs at
a nice value about 12 below the default (that is, at a higher priority than normal).

If a problem drives the system’s load average to 65, you may need to use nice to
start a high-priority shell before you can run commands to investigate the prob-
lem. Otherwise, you may have difficulty running even simple commands.

5.7 PS: MONITOR PROCESSES

ps is the system administrator’s main tool for monitoring processes. While ver-
sions of ps differ in their arguments and display, they all deliver essentially the
same information. Part of the enormous variation among versions of ps can be
traced back to differences in the development history of UNIX. However, ps is
also a command that vendors tend to customize for other reasons. It’s closely tied
to the kernel’s handling of processes, so it tends to reflect all of a vendors’ underly-
ing kernel changes.

ps can show the PID, UID, priority, and control terminal of processes. It also gives
information about how much memory a process is using, how much CPU time it
has consumed, and its current status (running, stopped, sleeping, etc.). Zombies
show up in a ps listing as <exiting> or <defunct>.

8. Actually, it's worse than this: the stand-alone nice interprets nice -5 to mean a positive increment of 5,
whereas the shell built-in nice interprets this same form to mean a negative increment of 5.

From the Library of Wow! eBook .Com

-8

ps: monitor processes 131

Implementations of ps have become hopelessly complex over the last decade. Sev-
eral vendors have abandoned the attempt to define meaningful displays and made
their pses completely configurable. With a little customization work, almost any
desired output can be produced. As a case in point, the ps used by Linux is a
trisexual and hermaphroditic version that understands multiple option sets and
uses an environment variable to tell it what universe it’s living in.

Do not be alarmed by all this complexity: it’s there mainly for developers, not for
system administrators. Although you will use ps frequently, you only need to
know a few specific incantations.

On Linux and AIX, you can obtain a useful overview of all the processes running
on the system with ps aux. The a option means to show all processes, x means to
show even processes that don't have a control terminal, and u selects the “user
oriented” output format. Here’s an example of ps aux output on a machine run-
ning Red Hat (AIX output for the same command differs slightly):

redhat$ ps aux
USER PID %CPU%MEM VSZ RSS TTY STAT TIME COMMAND

root 1 0.1 02 3356 560 ? S 0:00 1init [5]

root 2 0 0 0 0 ? SN 0:00 [ksoftirqd/0]

root 30 0 0 0 ? S< 0:00 [events/0]

root 4 0 0 0 O ? S< 0:00 [khelper]

root 5 0 0 0 0 ? S< 0:00 [kacpid]

root 18 0 0 0 0 ? S< 0:00 [kblockd/0]

root 28 0 0 0 0 ? S 0:00 [pdflush]

root 196 0 0 0 O ? S 0:00 [kjournald]

root 1050 0 0.1 2652 448 ? S<s 0:00 wudevd

root 1472 0 0.3 3048 1008 °? S<s 0:00 /sbin/dhclient -1

root 1646 0 0.3 3012 1012 ? S<s 0:00 /sbin/dhclient -1

root 1733 0 0 0 O ? S 0:00 [kjournald]

root 2124 0 0.3 3004 1008 ? Ss 0:00 /sbin/dhclient -1

root 2182 O 0.2 2264 59% ? Ss 0:00 syslogd -m 0

root 2186 0 0.1 2952 484 ? Ss 0:00 klogd -x

rpc 2207 0 0.2 2824 580 ¢ Ss 0:00 portmap
rpcuser 2227 O 0.2 2100 760 ? Ss 0:00 rpc.statd

root 2260 0 04 5668 1084 ? Ss 0:00 rpc.idmapd

root 2336 0 0.2 3268 556 ? Ss 0:00 /usr/sbin/acpid

root 2348 0 0.8 9100 2108 ? Ss 0:00 cupsd

root 2384 0 0.6 4080 1660 ? Ss 0:00 /usr/sbin/sshd

root 2399 0 0.3 2780 828 ? Ss 0:00 xinetd -stayalive

root 2419 0 1.1 7776 3004 °? Ss 0:00 sendmail: accept

Command names in brackets are not really commands at all but rather kernel
threads scheduled as processes. The meaning of each field is shown in Table 5.4
on the next page.

Another useful set of arguments for Linux and AIX is lax, which provides more
technical information. The a and x options are as above (show every process), and

From the Library of Wow! eBook .Com

132 Chapter 5 Controlling Processes

Table 5.4 Explanation of ps aux output

Field Contents

USER Username of the process’s owner

PID Process ID

%CPU Percentage of the CPU this process is using

%MEM Percentage of real memory this process is using

VSZ Virtual size of the process

RSS Resident set size (number of pages in memory)

TTY Control terminal ID

STAT Current process status:
R =Runnable D= In uninterruptible sleep
S = Sleeping (< 20 sec) T = Traced or stopped
Z =Zombie

Additional flags:
W= Process is swapped out
< = Process has higher than normal priority
N = Process has lower than normal priority
L = Some pages are locked in core
s = Process is a session leader
TIME CPU time the process has consumed
COMMAND Command name and arguments®

a. Programs can modify this info, so it's not necessarily an accurate representation of the
actual command line.

I selects the “long” output format. ps lax is also slightly faster to run than ps aux
because it doesn’t have to translate every UID to a username—efficiency can be
important if the system is already bogged down.

Shown here in an abbreviated example, ps lax includes fields such as the parent
process ID (PPID), nice value (NI), and the type of resource on which the process
is waiting (WCHAN).

redhat$ ps lax
F UID PID PPID PRINI VSZ RSS WCHAN STAT TIME COMMAND

4 0 1 0 16 0 3356 560 select S 0:00 1init [5]

1 0 2 1 3419 0 0 ksofti SN 0:00 [ksoftirqd/0
1 0 3 1 5-10 0 0 worker S< 0:00 [events/0]
1 0 4 3 5-10 0 0 worker S< 0:00 [khelper]

5 0 2186 1 16 0 2952 484 syslog Ss 0:00 klogd -x

5 32 2207 1 15 0 2824 580 - Ss 0:00 portmap

5 29 2227 1 18 0 2100 760 select Ss 0:00 rpc.statd
1 0 2260 1 16 0 5668 1084 - Ss 0:00 rpc.idmapd
1 0 2336 1 21 0 3268 556 select Ss 0:00 acpid

5 0 2384 1 17 0 4080 1660 select Ss 0:00 sshd

1 0 2399 1 15 0 2780 828 select Ss 0:00 xinetd -sta
5 0 2419 1 16 0 7776 3004 select Ss 0:00 sendmail: a

From the Library of Wow! eBook .Com

Dynamic monitoring with top, prstat, and topas 133

Wl [] Under Solaris and HP-UX, ps -ef is a good place to start. The e option selects all
soLaris processes, and the f option sets the output format. (ps -ef also works on AIX and
Linux systems; note the dash.)

solaris$ ps -ef
uUID PID PPID C STIME TTY TIME COMD

root 0 0 80 Dec?21 °? 0:02 sched

root 1 0 2 Dec?21 ? 4:32 /etc/init-

root 2 0 8 Dec21 °? 0:00 pageout

root 171 1 80 Dec?21 °? 0:02 /usr/lib/sendmail-bd

trent 8482 8444 35 14:34:10 pts/7 0:.00 ps-ef
trent 8444 8442 203 14:32:50 pts/7 0:01 -csh

The columns in the ps -ef output are explained in Table 5.5.

Table 5.5 Explanation of ps -ef output

Field Content Field Content

UID Username of the owner STIME Time the process was started
PID Process D TTY Control terminal

PPID PID of the parent process TIME CPU time consumed

C CPU use/scheduling info COMD Command and arguments

Like ps lax in the Linux and AIX worlds, ps -elf shows additional gory details on
Solaris and HP-UX systems:

% ps -elf
F S UD PID PPID C P NI ADDR Sz WCHAN TIME COMD
19 T root 0 0 80 0 SY f00c2fd8 O 0:02 sched
8 S root 1 0 65 1 20 ff26a800 88 ff2632c8 4:32 init-
8 S root 142 1 41 1 20 {f2e8000 176 f00cb69 0:00 syslogd

The STIME and TTY columns have been omitted to fit this page; they are identi-
cal to those produced with ps -ef. Nonobvious fields are described in Table 5.6 on
the next page.

5.8 DYNAMIC MONITORING WITH TOP, PRSTAT, AND TOPAS

Since commands like ps offer only a one-time snapshot of your system, it is often
difficult to grasp the big picture of what’s really happening. top is a free utility that
runs on many systems and provides a regularly updated summary of active pro-
cesses and their use of resources. On AIX, an equivalent utility is topas, and on
Solaris the analogous tool is prstat.

From the Library of Wow! eBook .Com

134

Chapter 5 Controlling Processes

Table 5.6 Explanation of ps -elf output

Field Contents
F Process flags; possible values vary by system (rarely useful for sysadmins)
S Process status:

O=Currently running S = Sleeping (waiting for event)
R = Eligible to run T = Stopped or being traced

Z =Zombie D= Uninterruptible sleep (disk, usually)
C Process CPU utilization/scheduling info
P Scheduling priority (internal to the kernel, different from nice value)
NI Nice value or SY for system processes
ADDR Memory address of the process
SZ Size (in pages) of the process in main memory

WCHAN Address of the object the process is waiting for

For example:

ubuntu$ top

top - 16:37:08 up 1:42, 2 users, load average: 0.01, 0.02, 0.06

Tasks: 76 total, 1 running, 74 sleeping, 1 stopped, 0 zombie

Cpu(s): 1.1% us, 6.3% sy, 0.6% ni, 88.6% id, 2.1% wa, 0.1% hi, 1.3% si
Mem: 256044k total, 254980k used, 1064k free, 15944k buffers
Swap: 524280k total, Ok used, 524280k free, 153192k cached

PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
3175 root 15 0 35436 12m 489% S 4.0 52 01419 X

3421 root 25 10 29916 15m 9808 S 2.0 6.2 01:10.5 rhn-applet-gui
1 root 16 0 3356 560 480 S 0.0 0.2 00:00.9 init
2 root 34 19 0 0 0 S 00 0 00:00.0 ksoftirqd/0
3 root 5 -10 0 0 0 S 00 0 00:00.7 events/O
4 root 5 -10 0 0 0 S 0.0 0 00:00.0 khelper
5 root 15 -10 0 0 0 S 0.0 0 00:00.0 kacpid
18 root 5 -10 0 0 0 S 00 0 00:00.0 kblockd/O
28 root 15 0 0 0 0 S 00 0 00:00.0 pdflush
29 root 15 0 0 0 0 S 00 0 00:00.3 pdflush
31 root 13 -10 0 0 0 S 00 0 00:00.0 aio/0
19 root 15 0 0 0 0 S 00 0 00:00.0 khubd
30 root 15 0 0 0 0 S 00 0 00:00.2 kswapdO
187 root 6 -10 0 0 0 S 0 0 00:00.0 kmirrord/0
196 root 15 O 0 0 0 S 0 0 00:01.3 kjournald

By default, the display updates every 10 seconds. The most CPU-consumptive
processes appear at the top. top also accepts input from the keyboard and allows
you to send signals and to renice processes, so you can observe how your actions
affect the overall condition of the machine.

From the Library of Wow! eBook .Com

The /proc filesystem 135

Root can run top with the -q option to goose it up to the highest possible priority.
This option can be very useful when you are trying to track down a process that
has already brought the system to its knees.

5.9 THE /PROC FILESYSTEM

& The Linux versions of ps and top read their process status information from the
/proc directory, a pseudo-filesystem in which the kernel exposes a variety of in-
teresting information about the systemss state. Despite the name /proc (and the
name of the underlying filesystem type, “proc”), the information is not limited to
process information—a variety of status information and statistics generated by
the kernel are represented here. You can even modify some parameters by writing
to the appropriate /proc file. See page 421 for some examples.

Although some of the information is easier to access through front-end com-
mands such as vimstat and ps, some of the less popular information must be read
directly from /proc. It's worth poking around in this directory to familiarize your-
self with everything that’s there. man proc also lists some useful tips and tricks.

Because the kernel creates the contents of /proc files on the fly (as they are read),
most appear to be empty when listed with Is -1. You’ll have to cat or more the
contents to see what they actually contain. But be cautious—a few files contain or
link to binary data that can confuse your terminal emulator if viewed directly.

Process-specific information is divided into subdirectories named by PID. For ex-
ample, /proc/1 is always the directory that contains information about init. Table
5.7 lists the most useful per-process files.

Table 5.7 Process information files in Linux /proc (numbered subdirectories)

File Contents

cmd Command or program the process is executing

cmdline® Complete command line of the process (null-separated)

cwd Symbolic link to the process’s current directory

environ The process’s environment variables (null-separated)

exe Symbolic link to the file being executed

fd Subdirectory containing links for each open file descriptor
maps Memory mapping information (shared segments, libraries, etc.)
root Symbolic link to the process’s root directory (set with chroot)
stat General process status information (best decoded with ps)
statm Memory usage information

a. May be unavailable if the process is swapped out of memory.

From the Library of Wow! eBook .Com

136 Chapter 5 Controlling Processes

The individual components contained within the cmdline and environ files are
separated by null characters rather than newlines. You can filter their contents
through tr "\000" "\n" to make them more readable.

The fd subdirectory represents open files in the form of symbolic links. File de-
scriptors that are connected to pipes or network sockets don’t have an associated
filename. The kernel supplies a generic description as the link target instead.

The maps file can be useful for determining what libraries a program is linked to
or depends on.
)

~ Solaris and AIX also have a /proc filesystem, but it does not include the extra
sotaris status and statistical information found on Linux. A group of tools known collec-
tively as the proc utilities display some useful information about running pro-
cesses. For instance, the procsig command in AIX and its Solaris equivalent psig
print the signal actions and handlers for a given process. Table 5.8 shows the most
useful proc utilities and their functions.

Table 5.8 Commands for reading /proc information in AIX and Solaris

Solaris® AIX Description

pcred [pid | core] proccred [pid] Prints/sets real, effective, and saved UID/GID
pldd [-F] [pid | core] ~procldd [pid] Shows library dependencies (like Idd)

psig [pid] procsig [pid] Lists signal actions and handlers
pfiles [pid] procfiles [pid] Prints open files

pwdx [pid] procwdx [pid] Prints the current working directory
pwait [pid] procwait [pid] Waits for a process to exit

j-Y

. Some of the Solaris proc tools accept a core file as input. This is primarily a debugging tool.
[ﬁ,ﬂ] HP-UX does not have a /proc filesystem or equivalent.

5.10 STRACE, TRUSS, AND TUSC: TRACE SIGNALS AND SYSTEM CALLS

It can sometimes be hard to figure out what a process is actually doing. You may
have to make educated guesses based on indirect data from the filesystem and
from tools such as ps.

Linux lets you directly observe a process with the strace command, which shows
every system call the process makes and every signal it receives. A similar com-
mand for Solaris and AIX is truss. The HP-UX equivalent is tusc; however, tusc
must be separately installed.

You can even attach strace or truss to a running process, snoop for a while, and
then detach from the process without disturbing it.”

9. Well, usually. strace can interrupt system calls. The monitored process must then be prepared to
restart them. This is a standard rule of UNIX software hygiene, but it’s not always observed.

From the Library of Wow! eBook .Com

strace, truss, and tusc: trace signals and system calls 137

Although system calls occur at a relatively low level of abstraction, you can usually
tell quite a bit about a process’s activity from the output. For example, the follow-
ing log was produced by strace run against an active copy of top:

redhat$ sudo strace -p 5810

gettimeofday({1116193814, 213881}, {300, 0}) =0
open('/proc”, O_RDONLY|O_NONBLOCK|O_LARGEFILE|O_DIRECTORY) = 7
fstat64(7, {st_mode=S_IFDIR|0555, st_size=0, ...}) =0

fcntl64(7, F_SETFD, FD_CLOEXEC) =0
getdents64(7, /* 36 entries */, 1024) = 1016
getdents64(7, /* 39 entries ¥/, 1024) = 1016
stat64("/proc/1", {st_mode=S_IFDIR|0555, st_size=0, ...}) =0
open("/proc/1/stat", O_RDONLY) =38

read(8, "1 (init) S 0 0 0 0 -1 4194560 73"..., 1023) =191

close(8) =0

Not only does strace show you the name of every system call made by the process,
but it also decodes the arguments and shows the result code the kernel returns.

strace is packed with goodies, most of which are documented in the man page.
For example, the -f flag follows forked processes, which is useful for tracing dae-
mons such as httpd that spawn many children. The -e file option displays only file
operations, a feature that’s especially handy for discovering the location of evasive
configuration files.

In this example, top starts by checking the current time. It then opens and stats
the /proc directory and reads the directory’s contents, thereby obtaining a list of
running processes. top goes on to stat the directory representing the init process
and then opens /proc/1/stat to read the init’s status information.

Here’s an even simpler example (the date command) using truss on Solaris:

solaris$ truss date

time() = 1242507670
brk(0x00024D30) =0
brk(0x00026D30) =0
open("/usr/share/lib/zoneinfo/US/Mountain’, O_RDONLY) = 3
fstat64(3, OXFFBFFAFO) =0

read(3, " T Z 1 f\O\O\O\O\O\O\O\O".., 877) = 877
close(3) =0

ioctl(1, TCGETA, OXFFBFFA94) =0

fstat64(1, OXFFBFF9BO) =0

write(1, "Sat May 16 1", 29) =29

Sat May 16 14:56:46 MDT 2009

_exit(0)

Here, after allocating memory and opening library dependencies (not shown),
date uses the time system call to read the system time, opens the appropriate time
zone file to determine the appropriate offset, and prints the date and time stamp
by calling the write system call.

From the Library of Wow! eBook .Com

138 Chapter 5 Controlling Processes

5.11 RUNAWAY PROCESSES

See page 1131 formore Runaway processes come in two flavors: user processes that consume excessive

information about amounts of a system resource, such as CPU time or disk space, and system pro-

PUENEY PIOCESES cesses that suddenly go berserk and exhibit wild behavior. The first type of run-
away is not necessarily malfunctioning; it might simply be a resource hog. System
processes are always supposed to behave reasonably.

You can identify processes that use excessive CPU time by looking at the output of
ps or top. If it’s obvious that a user process is consuming more CPU than is rea-
sonable, investigate the process. It can also be useful to look at the number of
processes waiting to run. Use the uptime command to show the load averages
(average numbers of runnable processes) over 1, 5, and 15-minute intervals.

There are two reasons to find out what a process is trying to do before tampering
with it. First, the process may be both legitimate and important. It’s unreasonable
to kill processes at random just because they happen to use a lot of CPU. Second,
the process may be malicious or destructive. In this case, you've got to know what
the process was doing (e.g., cracking passwords) so that you can fix the damage.

Processes that make excessive use of memory relative to the system’s physical
RAM can cause serious performance problems. You can check the memory size of
processes by using top. The VIRT column shows the total amount of virtual
memory allocated by each process, and the RES column shows the portion of that
memory that is currently mapped to specific memory pages (the “resident set”).
On Linux systems, applications that use the video card (such as the X server) geta
bad rap because video memory is included in the memory usage computations.

Both of these numbers can include shared resources such as libraries, and that
makes them potentially misleading. A more direct measure of process-specific
memory consumption is found in the DATA column, which is not shown by de-
fault. To add this column to top’s display, type the f key once top is running and
select DATA from the list. The DATA value indicates the amount of memory in
each process’s data and stack segments, so it’s relatively specific to individual pro-
cesses (modulo shared memory segments). Look for growth over time as well as
absolute size.

Runaway processes that produce output can fill up an entire filesystem, causing
numerous problems. When a filesystem fills up, lots of messages will be logged to
the console and attempts to write to the filesystem will produce error messages.

The first thing to do in this situation is to determine which filesystem is full and
which file is filling it up. The df -k command shows filesystem use. Look for a

filesystem that’s 100% or more full."’ Use the du command on the identified file-
system to find which directory is using the most space. Rinse and repeat with du

10. Most filesystem implementations reserve a portion (about 5%) of the storage space for “breathing
room,” but processes running as root can encroach on this space, resulting in a reported usage that is
greater than 100%.

From the Library of Wow! eBook .Com

Exercises 139

until the large files are discovered. If you can’t determine which process is using
the file, try using the fuser and Isof commands (covered in detail on page 144) for
more information.

You may want to suspend all suspicious-looking processes until you find the one
that’s causing the problem, but remember to restart the innocents when you are
done. When you find the offending process, remove the files it was creating.
Sometimes it’s smart to compress the file with gzip and rename it in case it con-
tains useful or important data.

5.12 RECOMMENDED READING

BOVET, DANIEL P., AND MARCO CESATI. Understanding the Linux Kernel (3rd Edi-
tion). Sebastopol, CA: O’'Reilly Media, 2006.

MCKUSICK, MARSHALL KIRK, AND GEORGE V. NEVILLE-NEIL. The Design and Im-
plementation of the FreeBSD Operating System. Reading, MA: Addison-Wesley
Professional, 2004.

5.13 EXERCISES

E5.1 Explain the relationship between a file’s UID and a running process’s
real UID and effective UID. Besides file access control, what is the pur-
pose of a process’s effective UID?

E5.2 Suppose that a user at your site has started a long-running process that
is consuming a significant fraction of a machine’s resources.

a) How would you recognize a process that is hogging resources?

b) Assume that the misbehaving process might be legitimate and
doesn’t deserve to die. Show the commands you would use to sus-
pend the process temporarily while you investigate.

c) Later, you discover that the process belongs to your boss and must
continue running. Show the commands youd use to resume the task.

d) Alternatively, assume that the process needs to be killed. What signal
would you send, and why? What if you needed to guarantee that the
process died?

E5.3 Find a process with a memory leak (write your own program if you
don’t have one handy). Use ps or top to monitor the program’s memory
use as it runs.

Y E5.4 Write a simple Perl script that processes the output of ps to determine
the total VSZ and RSS of the processes running on the system. How do
these numbers relate to the system’s actual amount of physical memory
and swap space?

From the Library of Wow! eBook .Com

Chapter 31. background jobs

Table of Contents

31.1. DaCKQrouNd PrOCESSESccveereeruesreeiesreeeesseeeesseeeesseeseesseeseesseaseessenseessenns
31.2. practice : background ProCESSEScceoererieririieiieieieieeee s
31.3. solution : background ProCESSESccceverierieriienieeie e see e

254

background jobs

31.1. background processes

jobs

Stuff that runs in background of your current shell can be displayed with the jobs
command. By default you will not have any jobs running in background.

root@rhel53 ~# jobs
root@rhel53 ~#

This jobs command will be used several times in this section.

control-Z

Some processes can be suspended with the Ctrl-Z key combination. This sends

a SIGSTOP signal to the Linux kernel, effectively freezing the operation of the
process.

When doing this in vi(m), then vi(m) goes to the background. The background vi(m)
can be seen with the jobs command.

[paul@RHEL4a ~]$ vi procdemo.txt

[51+ Stopped vim procdemo.txt
[paul@RHEL4a ~]$ jobs
[5]+ Stopped vim procdemo.txt

& ampersand

Processes that are started in background using the & character at the end of the
command line are also visible with the jobs command.

[paul@RHEL4a ~]1$ find / > allfiles.txt 2> /dev/null &
[6] 5230

[paul@RHEL4a ~]$ jobs
[5]+ Stopped vim procdemo.txt

[6]- Running find / sallfiles.txt 2>/dev/null &
[paul@RHEL4a ~]8$

jobs -p
An interesting option is jobs -p to see the process id of background processes.

[paul@RHEL4b ~]$ sleep 500 &

255

background jobs

[1] 4902

[paul@RHEL4b ~]$ sleep 400 &

[2] 4903

[paul@RHEL4b ~]$ jobs -p

4902

4903

[paul@RHEL4b ~]$ ps ~jobs -p~

PID TTY STAT TIME COMMAND

4902 pts/0 S 0:00 sleep 500
4903 pts/0 S 0:00 sleep 400

[paul@RHEL4b ~]$

Running the fg command will bring a background job to the foreground. The number
of the background job to bring forward is the parameter of fg.

[paul@RHEL5 ~]$ jobs

[1] Running sleep 1000 &
[2] - Running sleep 1000 &
[3]+ Running sleep 2000 &
[paul@RHEL5 ~]s fg 3

sleep 2000

Jobs that are suspended in background can be started in background with bg. The
bg will send a SIGCONT signal.

Below an example of the sleep command (suspended with Ctrl-Z) being reactivated
in background with bg.

[paul@RHEL5 ~]$ jobs
[paul@RHEL5 ~]S$ sleep 5000 &
[1] 6702

[paul@RHEL5 ~]$ sleep 3000

[2]+ Stopped sleep 3000
[paul@RHEL5 ~]$ jobs

[1]- Running sleep 5000 &
[2]+ Stopped sleep 3000

[paul@RHEL5 ~]$ bg 2

[2]+ sleep 3000 &

[paul@RHEL5 ~]$ jobs

[1]- Running sleep 5000 &
[2]+ Running sleep 3000 &
[paul@RHEL5 ~]$

256

background jobs

31.2. practice : background processes

1. Use the jobs command to verify whether you have any processes running in
background.

2. Use vi to create a little text file. Suspend vi in background.
3. Verify with jobs that vi is suspended in background.

4. Start find / > allfiles.txt 2>/dev/null in foreground. Suspend it in background
before it finishes.

5. Start two long sleep processes in background.

6. Display all jobs in background.

7. Use the kill command to suspend the last sleep process.

8. Continue the find process in background (make sure it runs again).
9. Put one of the sleep commands back in foreground.

10. (if time permits, a general review guestion...) Explain in detail where the numbers
come from in the next screenshot. When are the variables replaced by their value ?
By which shell ?

[paul@RHEL4b ~]$ echo $$ $SPPID

4224 4223
[paul@RHEL4b ~]$ bash -c "echo $$ $SPPID"
4224 4223
[paul@RHEL4b ~]$ bash -c 'echo $$ S$SPPID'
5059 4224

[paul@RHEL4b ~]$ bash -c¢ “echo $$ S$SPPID™
4223: 4224: command not found

257

background jobs

31.3. solution : background processes

1. Use the jobs command to verify whether you have any processes running in
background.

jobs (maybe the catfun is still running?)

2. Use vi to create a little text file. Suspend vi in background.

vi text.txt
(inside vi press ctrl-z)

3. Verify with jobs that vi is suspended in background.

[paulerhel53 ~]$ jobs
[1]+ Stopped vim text.txt

4. Start find / > allfiles.txt 2>/dev/null in foreground. Suspend it in background
before it finishes.

[paul@rhel53 ~]$ find / > allfiles.txt 2>/dev/null
(press ctrl-z)
[2]+ Stopped find / > allfiles.txt 2> /dev/null

5. Start two long sleep processes in background.

sleep 4000 & ; sleep 5000 &

6. Display all jobs in background.

[paulerhel53 ~]$ jobs

[11- Stopped vim text.txt
[2]+ Stopped find / > allfiles.txt 2> /dev/null
[3] Running sleep 4000 &
[4] Running sleep 5000 &

7. Use the kill command to suspend the last sleep process.

[paul@rhel53 ~]$ kill -SIGSTOP 4519
[paule@erhel53 ~]$ jobs

[1] Stopped vim text.txt

[2] - Stopped find / > allfiles.txt 2> /dev/null
[3] Running sleep 4000 &

[4]+ Stopped sleep 5000

8. Continue the find process in background (make sure it runs again).
bg 2 (verify the job-id in your jobs list)

9. Put one of the sleep commands back in foreground.

fg 3 (again verify your job-id)

10. (if time permits, a general review question...) Explain in detail where the numbers
come from in the next screenshot. When are the variables replaced by their value ?
By which shell ?

258

background jobs

[paul@RHEL4b ~]$ echo $$ S$PPID

4224 4223
[paul@RHEL4b ~]$ bash -c "echo $$ $PPID"
4224 4223
[paul@RHEL4b ~]$ bash -c 'echo $$ S$SPPID'
5059 4224

[paul@RHEL4b ~]$ bash -c¢ “echo $$ S$SPPID™
4223: 4224 : command not found

The current bash shell will replace the $$ and $PPID while scanning the line, and
before executing the echo command.

[paul@RHEL4b ~]$ echo $$ $SPPID
4224 4223

The variables are now double quoted, but the current bash shell will replace $$ and
$PPID while scanning the line, and before executing the bach -c command.

[paul@RHEL4b ~]$ bash -c "echo $$ S$SPPID"
4224 4223

The variables are now single quoted. The current bash shell will not replace the $$
and the $PPID. The bash -c command will be executed before the variables replaced
with their value. This latter bash is the one replacing the $$ and $PPID with their
value.

[paul@RHEL4b ~]$ bash -c 'echo $$ S$SPPID'
5059 4224

With backticks the shell will still replace both variable before the embedded echo is
executed. The result of this echo is the two process id's. These are given as commands
to bash -c. But two numbers are not commands!

[paul@RHEL4b ~]$ bash -c¢ “echo $$ $SPPID™
4223: 4224: command not found

259

The Linux Command Line & Shell Scripting Bible 2™ Edition

haldaemon:x:68:
xfs:x:43:
gdm:x:42:
rich:x:500:
mama:x:501:
katie:x:502:
jessica:x:503:
mysql:x:27:
test:x:504:
sharing:x:505:test, rich
#

When changing the name of a group, the GID and group members remain the same,
only the group name changes. Because all security permissions are based on the GID,
you can change the name of a group as often as you wish without adversely affecting
file security.

Decoding File Permissions

Now that you know about users and groups, it's time to decode the cryptic file
permissions you've seen when using the 1s command. This section describes how to
decipher the permissions and where they come from.

Using File Permission Symbols

If you remember from Chapter 3, the 1s command allows you to see the file permissions
for files, directories, and devices on the Linux system:

$ s -1

total 68

-rw-rw-r-- 1 rich rich 50 2010-09-13 07:49 filel.gz
-rw-rw-r-- 1 rich rich 23 2010-09-13 07:50 file2
-rw-rw-r-- 1 rich rich 48 2010-09-13 07:56 file3
-rw-rw-r-- 1 rich rich 34 2010-09-13 08:59 file4
-rwxrwxr-x 1 rich rich 4882 2010-09-18 13:58 myprog
-rw-rw-r-- 1 rich rich 237 2010-09-18 13:58 myprog.c
drwxrwxr-x 2 rich rich 4096 2010-09-03 15:12 testl
drwxrwxr-x 2 rich rich 4096 2010-09-03 15:12 test2

172

The Linux Command Line & Shell Scripting Bible 2™ Edition

$

The first field in the output listing is a code that describes the permissions for the files
and directories. The first character in the field defines the type of the object:

» - for files

 d for directories

« 1 for links

» ¢ for character devices
* b for block devices

« n for network devices

After that, there are three sets of three characters. Each set of three characters
defines an access permission triplet:

» r for read permission for the object
» w for write permission for the object
» X for execute permission for the object

If a permission is denied, a dash appears in the location. The three sets relate the
three levels of security for the object:

* The owner of the object

» The group that owns the object

» Everyone else on the system
This is broken down in Figure 6.1.

Figure 6.1 The Linux file permissions
-rwxrwxr-x 1 rich rich 4882 2010-09-18 13:58 myprog

permissions for everyone else

permissions for group members
permissions for the file owner
The easiest way to discuss this is to take an example and decode the file permissions
one by one:
-rwxrwxr-x 1 rich rich 4882 2010-09-18 13:58 myprog
The file myprog has the following sets of permissions:
« rwx for the file owner (set to the login name rich)
» rwx for the file group owner (set to the group name rich)
» r-x for everyone else on the system

These permissions indicate that the user login name rich can read, write, and execute
the file (considered full permissions). Likewise, members in the group rich can also read,
write, and execute the file. However, anyone else not in the rich group can only read
and execute the file; the w is replaced with a dash, indicating that write permissions are
not assigned to this security level.

173

The Linux Command Line & Shell Scripting Bible 2™ Edition

Default File Permissions

You may be wondering about where these file permissions come from. The answer
is umask. The umask command sets the default permissions for any file or directory you
create:

$ touch newfile
$ 1s -al newfile
-rw-r--r-- 1 rich rich 0 Sep 20 19:16 newfile

$

The touch command created the file using the default permissions assigned to my
user account. The umask command shows and sets the default permissions:

$ umask

0022

$

Unfortunately, the umask command setting isn't overtly clear, and trying to
understand exactly how it works makes things even muddier. The first digit represents a
special security feature called the sticky bit. We'll talk more about that later on in
this chapter in the “Sharing Files” section.

The next three digits represent the octal values of the umask for a file or directory. To
understand how umaskworks, you first need to understand octal mode security settings.

Octal mode security settings take the three rwx permission values and convert
them into a 3-bit binary value, represented by a single octal value. In the binary
representation, each position is a binary bit. Thus, if the read permission is the only
permission set, the value becomes r- -, relating to a binary value of 100, indicating the
octal value of 4. Table 6.5 shows the possible combinations you'll run into.

Table 6.5 Linux File Permission Codes

Permissions Binary Octal Description
000 0 No permissions

==, 001 1 Execute-only permission

W 010 2 Write-only permission
“WX 011 3 Write and execute permissions
e 100 4 Read-only permission
F=% 101 5 Read and execute permissions
rw- 110 6 Read and write permissions
rwX 111 7 Read, write, and execute permissions

Octal mode takes the octal permissions and lists three of them in order for the three
security levels (user, group, and everyone). Thus, the octal mode value 664 represents
read and write permissions for the user and group, but read-only permission for
everyone else.

174

The Linux Command Line & Shell Scripting Bible 2™ Edition

Now that you know about octal mode permissions, the umask value becomes even
more confusing. The octal mode shown for the default umask on my Linux system is
0022, but the file | created had an octal mode permission of 644. How did that happen?

The umask value is just that, a mask. It masks out the permissions you don't want to
give to the security level. Now we have to dive into some octal arithmetic to figure out
the rest of the story.

The umask value is subtracted from the full permission set for an object. The full
permission for a file is mode 666 (read/write permission for all), but for a directory it's
777 (read/write/execute permission for all).

Thus, in the example, the file starts out with permissions 666, and the umask of 022 is
applied, leaving a file permission of 644.

The umask value is normally set in the /etc/profile startup file (see Chapter 5).
You can specify a different default umask setting using the umask command:

$ umask 026

$ touch newfile2

$ Uls -1 newfile2

-rW-r----- 1 rich rich 0 Sep 20 19:46 newfile2

$

By setting the umask value to 026, the default file permissions become 640, so the
new file now is restricted to read-only for the group members, and everyone else on the
system has no permissions to the file.

The umask value also applies to making new directories:

$ mkdir newdir

$ 1s -1

drwxr-x--x 2 rich rich 4096 Sep 20 20:11 newdir/

$

Because the default permissions for a directory are 777, the resulting permissions
from the umask are different from those of a new file. The 026 umask value is
subtracted from 777, leaving the 751 directory permission setting.

Changing Security Settings

If you've already created a file or directory and need to change the security settings on
it, there are a few different utilities available in Linux. This section shows you how to
change the existing permissions, the default owner, and the default group settings for a
file or directory.

Changing Permissions

175

The Linux Command Line & Shell Scripting Bible 2™ Edition

The chmod command allows you to change the security settings for files and directories.
The format of the chmodcommand is:

chmod options mode file

The mode parameter allows you to set the security settings using either octal or
symbolic mode. The octal mode settings are pretty straightforward; just use the
standard three-digit octal code you want the file to have:

$ chmod 760 newfile
$ 1s -1 newfile

- rwWXrw- - - - 1 rich rich 0 Sep 20 19:16 newfile

$

The octal file permissions are automatically applied to the file indicated. The symbolic
mode permissions are not so easy to implement.

Instead of wusing the normal string of three sets of three characters,
the chmod command takes a different approach. The following is the format for
specifying a permission in symbolic mode:

[ugoa..] [[+-=][rwxXstugo..]

Makes perfectly good sense, doesn't it? The first group of characters defines to whom
the new permissions apply:

* u for the user

» g for the group

» o for others (everyone else)
» a for all of the above

Next, a symbol is used to indicate whether you want to add the permission to the
existing permissions (+), subtract the permission from the existing permission (-), or set
the permissions to the value (=).

Finally, the third symbol is the permission used for the setting. You may notice that
there are more than the normal rwx values here. The additional settings are:

» X to assign execute permissions only if the object is a directory or if it already had
execute permissions

s to set the UID or GID on execution

t to save program text

u to set the permissions to the owner's permissions
g to set the permissions to the group's permissions
0 to set the permissions to the other's permissions
Using these permissions looks like this:

$ chmod o+r newfile
$ 1s -1 newfile

- rWXrw-r-- 1 rich rich 0 Sep 20 19:16 newfile

$

176

The Linux Command Line & Shell Scripting Bible 2™ Edition

The o+r entry adds the read permission to whatever permissions the everyone
security level already had.

$ chmod u-x newfile
$ 1s -1 newfile
-rwW-rw-r-- 1 rich rich 0 Sep 20 19:16 newfile

$

The u-x entry removes the execute permission that the user already had. Note that
the settings for the 1s command indicate if a file has execution permissions by adding
an asterisk to the file name.

The options parameters provide a few additional features to augment the behavior of
the chmod command. The -Rparameter performs the file and directory changes
recursively. You can use wildcard characters for the file name specified, changing the
permissions on multiple files with just one command.

Changing Ownership

Sometimes you need to change the owner of a file, such as when someone leaves an
organization or a developer creates an application that needs to be owned by a system
account when it's in production. Linux provides two commands for doing that.
The chown command makes it easy to change the owner of a file, and
the chgrp command allows you to change the default group of a file.

The format of the chown command is:

chown options owner[.group] file

You can specify either the login name or the numeric UID for the new owner of the file:
chown dan newfile

1s -1 newfile

-rw-rw-r-- 1 dan rich 0 Sep 20 19:16 newfile

#

Simple. The chown command also allows you to change both the user and group of a
file:

chown dan.shared newfile

1s -1 newfile

-rwW-rw-r-- 1 dan shared 0 Sep 20 19:16 newfile

#
If you really want to get tricky, you can just change the default group for a file:

chown .rich newfile
1s -1 newfile

-rw-rw-r-- 1 dan rich 0 Sep 20 19:16 newfile
#

177

The Linux Command Line & Shell Scripting Bible 2™ Edition

Finally, if your Linux system uses individual group names that match user login
names, you can change both with just one entry:

chown test. newfile
1s -1 newfile

-rwW-rw-r-- 1 test test 0 Sep 20 19:16 newfile

#

The chown command uses a few different option parameters. The -R parameter
allows you to make changes recursively through subdirectories and files, using a
wildcard character. The -h parameter also changes the ownership of any files that are
symbolically linked to the file.

Note

Only the root user can change the owner of a file. Any user can change the default group of
a file, but the user must be a member of the groups the file is changed from and to.

The chgrp command provides an easy way to change just the default group for a file
or directory:

$ chgrp shared newfile
$ 1s -1 newfile

-rW-rw-r-- 1 rich shared 0 Sep 20 19:16 newfile

$

Now any member in the shared group can write to the file. This is one way to share
files on a Linux system. However, sharing files among a group of people on the system
can get tricky. The next section discusses how to do this.

Sharing Files

As you've probably already figured out, creating groups is the way to share access to
files on the Linux system. However, for a complete file-sharing environment, things are
more complicated.

As you've already seen in the “Decoding File Permissions” section, when you create a
new file, Linux assigns the file permissions of the new file using your default UID and
GID. To allow others access to the file, you need to either change the security
permissions for the everyone security group or assign the file a different default group
that contains other users.

This can be a pain in a large environment if you want to create and share documents
among several people. Fortunately, there's a simple solution for how to solve this
problem.

There are three additional bits of information that Linux stores for each file and
directory:

* The set user id (SUID): When a file is executed by a user, the program runs
under the permissions of the file owner.

178

The Linux Command Line & Shell Scripting Bible 2™ Edition

* The set group id (SGID): For a file, the program runs under the permissions of
the file group. For a directory, new files created in the directory use the directory
group as the default group.

* The sticky bit: The file remains (sticks) in memory after the process ends.

The SGID bit is important for sharing files. By enabling the SGID bit, you can force all
new files created in a shared directory to be owned by the directory's group and now the
individual user's group.

The SGID is set using the chmod command. It's added to the beginning of the
standard three-digit octal value (making a four-digit octal value), or you can use the
symbol s in symbolic mode.

If you're using octal mode, you'll need to know the arrangement of the bits, shown
in Table 6.6.

Table 6.6 The chmod SUID, SGID, and Sticky Bit Octal Values

‘Binary HOctal HDescription ‘
‘OOO HO HAll bits are cleared. ‘
001 |1 The sticky bit s set. |
010 |2 | The SGID bit is set. |
‘011 H3 HThe SGID and sticky bits are set. ‘
100 4 The SUID bitis set. |
‘101 HS HThe SUID and sticky bits are set. ‘
110 6 The SUID and SGID bits are set. |
‘l 11 H7 HAH bits are set. ‘

So, to create a shared directory that always sets the directory group for all new files,
all you need to do is set the SGID bit for the directory:

$ mkdir testdir

$ s -1

drwxrwxr-x 2 rich rich 4096 Sep 20 23:12 testdir/
$ chgrp shared testdir

$ chmod g+s testdir

$ s -1

drwxrwsr-x 2 rich shared 4096 Sep 20 23:12 testdir/
$ umask 002

$ cd testdir

$ touch testfile

$ s -1

total 0O

-rW-rw-r-- 1 rich shared 0 Sep 20 23:13 testfile

179

The Linux Command Line & Shell Scripting Bible 2™ Edition

$

The first step is to create a directory that you want to share using
the mkdir command. Next, the chgrp command is used to change the default group
for the directory to a group that contains the members who need to share files. Finally,
the SGID bit is set for the directory to ensure that any files created in the directory use
the shared group name as the default group.

For this environment to work properly, all of the group members need to have their
umask values set to make files writable by group members. In the preceding example,
the umask is changed to 002 so that the files are writable by the group.

After all that's done, any member of the group can go to the shared directory and
create a new file. As expected, the new file uses the default group of the directory, not
the user account's default group. Now any user in the shared group can access this file.

Summary

This chapter discussed the command line commands you need to know to manage the
Linux security on your system. Linux uses a system of user IDs and group IDs to protect
access to files, directories, and devices. Linux stores information about user accounts in
the /etc/passwd file and information about groups in the /etc/group file. Each user
is assigned a unique numeric user ID, along with a text login name to identify the user in
the system. Groups are also assigned unique numerical group IDs, and text group
names. A group can contain one or more users to allowed shared access to system
resources.

There are several commands available for managing user accounts and groups.
The useradd command allows you to create new user accounts, and
the groupadd command allows you to create new group accounts. To modify an
existing user account, use the usermod command. Similarly, the groupmod command
is used to modify group account information.

Linux uses a complicated system of bits to determine access permissions for files and
directories. Each file contains three security levels of protection: the file's owner, a
default group that has access to the file, and a level for everyone else on the system.
Each security level is defined by three access bits: read, write, and execute. The
combination of three bits is often referred to by the symbols rwx, for read, write, and
execute. If a permission is denied, its symbol is replaced with a dash (such as r-- for
read-only permission).

The symbolic permissions are often referred to as octal values, with the three bits
combined into one octal value and three octal values representing the three security
levels. The umask command is used to set the default security settings for files and
directories created on the system. The system administrator normally sets a default
umask value in the /etc/profile file, but you can use the umask command to
change your umask value at any time.

The chmod command is used to change security settings for files and directories. Only
the file's owner can change permissions for a file or directory. However, the root user
can change the security settings for any file or directory on the system.

180

The Linux Command Line & Shell Scripting Bible 2™ Edition

« If the word appears after the current cursor location, it jumps to the first location
where the text appears.

+ If the word doesn't appear after the current cursor location, it wraps around the
end of the file to the first location in the file where the text appears (and indicates
this with a message).

+ It produces an error message stating that the text was not found in the file.

To continue searching for the same word, press the forward slash character and then
press the Enter key, or you can use the n key, for next.

The substitute command allows you to quickly replace (substitute) one word for
another in the text. To get to the substitute command you must be in command line
mode. The format for the substitute command is:

:s/old/new/

The vim editor jumps to the first occurrence of the text old and replaces it with the
text new. There are a few modifications you can make to the substitute command to
substitute more than one occurrence of the text:

+ :s/old/new/qg to replace all occurrences of old in a line

:n,ms/old/new/gto replace all occurrences of old between line
numbers n and m

:%s/0ld/new/qg to replace all occurrences of old in the entire file
:%s/0ld/new/gc to replace all occurrences of old in the entire file, but prompt
for each occurrence

As you can see, for a command line text editor, vim contains quite a few advanced
features. Because every Linux distribution includes it, it's a good idea to at least know

the basics of the vim editor so that you can always edit scripts, no matter where you are
or what you have available.

The emacs Editor

The emacs editor is an extremely popular editor that appeared before even Unix was
around. Developers liked it so much they ported it to the Unix environment, and now it's
been ported to the Linux environment. The emacs editor started out life as a console
editor, much like vi, but has made the migration to the graphical world.

The emacs editor still provides the original console mode editor, but now it also has
the ability to use a graphical X Windows window to allow editing text in a graphical
environment. Typically, when you start the emacs editor from a command line, the
editor will determine if you have an available X Window session and start in graphical
mode. If you don't, it will start in console mode.

This section describes both the console mode and graphical mode emacs editors so
that you'll know how to use either one if you want (or need) to.

Using emacs on the Console

225

The Linux Command Line & Shell Scripting Bible 2™ Edition

The console mode version of emacs is another editor that uses lots of key commands to
perform editing functions. The emacs editor uses key combinations involving the Control
key (the Ctrl key on the PC keyboard) and the Meta key. In most PC terminal emulator
packages, the Meta key is mapped to the PC's Alt key. The official emacs documents
abbreviate the Ctrl key as C- and the Meta key as M-, Thus, if you enter a Ctrl-x key
combination, the document shows C-x. This chapter will do the same so as not to
confuse you.

The Basics of emacs

To edit a file using emacs, from the command line, enter:

$ emacs myprog.c

The emacs console mode window appears with a short introduction and help screen.
Don't be alarmed; as soon as you press a key, emacs loads the file into the active buffer
and displays the text, as shown in Figure 9.2.

Figure 9.2 Editing a file using the emacs editor in console mode

© ® @ rich@rich-desktop: -

for(i = 1; i <= number; i++)

factorial = factorial * i;

printf{*The factorial of %d is %d\n", number, factorial};
return 8;

-UU-:----F1 myprog.c All L1 (C/L Abbrew)----ceeemomamniiiaiaaas
For information about GNU Emacs and the GNU system, type C-h C-a.

You'll notice that the top of the console mode window shows a typical menu bar.
Unfortunately, you won't be able to use the menu bar in console mode, only in graphical
mode.

Note

If you have a graphical desktop but you prefer to use emacs in console mode instead of X
Windows mode, use the -nwoption on the command line.

Unlike the vim editor, where you have to move into and out of insert mode to switch
between entering commands and inserting text, the emacs editor has only one mode. If
you type a printable character, emacs inserts it at the current cursor position. If you
type a command, emacs executes the command.

To move the cursor around the buffer area, you can use the arrow keys and the
PageUp and PageDown keys, assuming that emacs detected your terminal emulator
correctly. If not, there are commands for moving the cursor around:

226

The Linux Command Line & Shell Scripting Bible 2™ Edition

» C-p to move up one line (the previous line in the text).

» C-b to move left (back) one character.

» (C-f to move right (forward) one character.

* C-n to move down one line (the next line in the text).
There are also commands for making longer jumps with the cursor within the text:

* M-f moves right (forward) to the next word.

* M-b moves left (backward) to the previous word.

* (C-a moves to the beginning of the current line.

» (C-e moves to the end of the current line.

* M-a moves to the beginning of the current sentence.

* M-e moves to the end of the current sentence.

* M-v moves back one screen of data.

» C-v moves forward one screen of data.

* M-<to move the first line of the text.

* M->to move to the last line of the text.

There are several commands you should know for saving the editor buffer back into
the file, and exiting emacs:

e (C-x C-s tosave the current buffer contents to the file.

» (-z to exit emacs but keep it running in your session so that you can come back
to it.

* C-x C-c to exit emacs and stop the program.

You'll notice that two of these features require two key commands. The C-x command
is called the extend command. This provides yet another whole set of commands to
work with.

Editing Data

The emacs editor is pretty robust about inserting and deleting text in the buffer. To
insert text, just move the cursor to the location where you want to insert the text and
start typing. To delete text, emacs uses the Backspace key to delete the character
before the current cursor position and the Delete key to delete the character at the
current cursor location.

The emacs editor also has commands for killing text. The difference between deleting
text and killing text is that when you kill text, emacs places it in a temporary area where
you can retrieve it (see the “Copying and Pasting” section). Deleted text is gone forever.

There are a few commands for killing text in the buffer:
* M-Backspace to kill the word before the current cursor position
* M-d to kill the word after the current cursor position
» C-k to kill from the current cursor position to the end of the line
* M-k to kill from the current cursor position to the end of the sentence

227

The Linux Command Line & Shell Scripting Bible 2™ Edition

The emacs editor also includes a fancy way of mass-killing text. Just move the cursor
to the start of the area you want to kill and press either the C-@ or C-Spacebar keys.
Then move the cursor to the end of the area you want to kill and press the C-
w command keys. All of the text between the two locations is killed.

If you happen to make a mistake when killing text, the C-u command will undo the kill
command, and return the data the state it was in before you killed it.

Copying and Pasting

You've seen how to cut data from the emacs buffer area; now it's time to see how to
paste it somewhere else. Unfortunately, if you use the vim editor, this process may
confuse you when you use the emacs editor.

In an unfortunate coincidence, pasting data in emacs is called yanking. In the vim
editor, copying is called yanking, which is what makes this a difficult thing to remember
if you happen to use both editors.

After you kill data using one of the kill commands, move the cursor to the location
where you want to paste the data, and use the C-y command. This yanks the text out of
the temporary area and pastes it at the current cursor position. The C-y command
yanks the text from the last kill command. If you've performed multiple kill commands,
you can cycle through them using the M-y command.

To copy text, just yank it back into the same location you killed it from and then move
to the new location and use the C-y command again. You can yank text back as many
times as you desire.

Searching and Replacing

Searching for text in the emacs editor is done by using the C-s and C-r commands.
The C-s command performs a forward search in the buffer area from the current cursor
position to the end of the buffer, whereas the C-rcommand performs a backward
search in the buffer area from the current cursor position to the start of the buffer.

When you enter either the C-s or C-r command, a prompt appears in the bottom
line, querying you for the text to search. There are two types of searches that emacs
can perform.

In an incremental search, the emacs editor performs the text search in real-time mode
as you type the word. When you type the first letter, it highlights all of the occurrences
of that letter in the buffer. When you type the second letter, it highlights all of the
occurrences of the two-letter combination in the text, and so on until you complete the
text you're searching for.

In a non-incremental search, press the Enter key after the C-s or C-r commands.
This locks the search query into the bottom line area and allows you to type the search
text in full before searching.

To replace an existing text string with a new text string, you have to use the M-
x command. This command requires a text command, along with parameters.

228

The Linux Command Line & Shell Scripting Bible 2™ Edition

The text command is replace-string. After typing the command, press the Enter
key, and emacs will query you for the existing text string. After entering that, press the
Enter key again, and emacs will query you for the new replacement text string.

Using Buffers in emacs

The emacs editor allows you to edit multiple files at the same time by having multiple
buffer areas. You can load files into a buffer and switch between buffers while editing.

To load a new file into a buffer while you're in emacs, use the C-x C-f key
combination. This is the emacs Find a File mode. It takes you to the bottom line in the
window and allows you to enter the name of the file you want to start to edit. If you
don't know the name or location of the file, just press the Enter key. This brings up a file
browser in the edit window, as shown in Figure 9.3.

Figure 9.3 The emacs Find a File mode browser

2 @ @ rich@rich-desktop: -
File Edit Vi Terminal H

Mark Regexp Immediate Subdir

total used in directory 544 available 56310608
drwxr-xr-x 37 rich rich 4096 2010-18-67 19:38
drwxr-xr-x 4 root root 4896 201€-09-23 19:01

drwx------ 2 rich rich 4896 2018-89-22 12:18 .aptitude
SFifes=n 1 rich rich 2831 2010-89-27 20:32 .bash history
-rw-r--r-- 1 rich rich 220 2018-85-16@ 18:36 .bash logout
-rw-r--r-- 1 rich rich 3103 2010-85-16 18:36 .bashrc
drwx------ 5 rich rich 4896 2010-18-87 19:27 iche
arwx------ 3 rich rich 4896 2010-89-11 18:34 .compil
drwxr-xr-x 18 rich rich 4696 2018-89-11 18:32 .config
drwx------ 3 rich rich 4096 2010-85-18 18:47 .dbu

drwxr-xr-x 2 rich rich 4996 2010-89-22 12:18

drwxr-xr-x 2 rich rich 4696 2010-89-11 18:31 Desktop
-rw-r--r-- 1 rich rich 41 2010-10-87 19:27 .dmrc

drwxr-xr-x 2 rich rich 4896 201€-85-10 18:47 Document
drwxr-xr-x 2 rich rich 4896 2818-89-22 13:46

drwxr-xr-x 3 rich rich 4096 2010-16-67 19:38 .emac

- TW-- 1 rich rich 16 2010-05-10 18:47 .esd auth
-rw-r--r-- 1 rich rich 179 2010-085-10 18:36 examples.desktop
drwxr-xr-x 2 rich rich 4896 28168-86-28 28:89 .fontconfig

(Dired by name)

From here, you can browse to the file you want to edit. To traverse up a directory
level, go to the double dot entry, and press the Enter key. To traverse down a directory,
go to the directory entry and press the Enter key. When you've found the file you want
to edit, just press the Enter key, and emacs will load it into a new buffer area.

You can list the active buffer areas by pressing the C-x C-b extended command
combination. The emacs editor splits the editor window and displays a list of buffers in
the bottom window. There are always two buffers that emacs provides in addition to
your main editing buffer:

» A scratch area called *scratch*
* A message area called *Messages*

The scratch area allows you to enter LISP programming commands as well as enter
notes to yourself. The message area shows messages generated by emacs while
operating. If any errors occur while using emacs, they will appear in the message area.

There are two ways to switch to a different buffer area in the window:

* C-x o to switch to the buffer listing window. Use the arrow keys to move to the
buffer area you want and press the Enter key.

229

The Linux Command Line & Shell Scripting Bible 2™ Edition

* C-x b totype in the name of the buffer area you want to switch to.

When you select the option to switch to the buffer listing window, emacs will open the
buffer area in the new window area. The emacs editor allows you to have multiple
windows open in a single session. The following section discusses how to manage
multiple windows in emacs.

Using Windows in Console Mode emacs

The console mode emacs editor was developed many years before the idea of graphical
windows appeared. However, it was advanced for its time, in that it could support
multiple editing windows within the main emacs window.
You can split the emacs editing window into multiple windows by using one of two
commands:
* C-x 2 splits the window horizontally into two windows.
e C-x 3 splits the window vertically into two windows.

To move from one window to another, use the C-x o command. You'll notice that
when you create a new window, emacs uses the buffer area from the original window in
the new window. Once you move into the new window, you can use theC-x C-
f command to load a new file, or one of the commands to switch to a different buffer
area in the new window.

To close a window, move to it and use the C-x 0 (that's a zero) command. If you want
to close all of the windows except the one you're in, use the C-x 1 (that's a numerical
one) command.

Using emacs in X Windows

If you use emacs from an X Windows environment (such as the KDE or GNOME
desktops), it will start in graphical mode, as shown in Figure 9.4.

Figure 9.4 The emacs graphical window

230

The Linux Command Line & Shell Scripting Bible 2™ Edition

7AZPM W) BB Ty @urich O

int main()

int 1i;
int facterial = 1:
int number = 5;

for(i = 1; i == number; i++)
{
factorial = factorial * i;

}

v printf(f i , number, factorial);

--i--- myprog.c Top L1 (C/L Abbrev)-------------c---cccocomeniono oo
Eelcome to GNU Emacs, one component of the GNU/Linux operating system.
To follow a link, click Mouse-1 on it, or move to it and type RET.

To quit a partially entered command, type Control-g.

Important Help menu items:

Emacs Tutorial Learn basic Emacs keystroke commands

Read the Emacs Manual View the Emacs manual using Info

{Non)Warranty GNU Emacs comes with ABSOLUTELY NO WARRANTY
Copying Conditions Conditions for redistributing and changing Emacs

= [update Manager] & emacs@rich-desktop

If you've already used emacs in console mode, you should be fairly familiar with the X
Windows mode. All of the key commands are available as menu bar items. The emacs
menu bar contains the following items:

» File: Allows you to open files in the window, create new windows, close windows,
save buffers, and print buffers.

» Edit: Allows you to cut and copy selected text to the clipboard, paste clipboard
data to the current cursor position, search for text, and replace text.

» Options: Provides settings for many more emacs features, such as highlighting,
word wrap, cursor type, and setting fonts.

« Buffers: Lists the current buffers available and allows you to easily switch
between buffer areas.

» Tools: Provides access to the advanced features in emacs, such as the command
line interface access, spell checking, comparing text between files (called diff),
sending an e-mail message, calendar, and the calculator.

» Help: Provides the emacs manual online for access to help on specific emacs
functions.

In addition to the normal graphical emacs menu bar items, there is often a separate
item specific to the file type in the editor buffer. Figure 9.4 shows opening a C program,
so emacs provided a C menu item, allowing advanced settings for highlighting C syntax,
and compiling, running, and debugging the code from a command prompt.

The graphical emacs window is an example of an older console application making the
migration to the graphical world. Now that many Linux distributions provide graphical
desktops (even on servers that don't need them), graphical editors are becoming more
commonplace. Both of the popular Linux desktop environments (KDE and GNOME) have

231

The Linux Command Line & Shell Scripting Bible 2™ Edition

also provided graphical text editors specifically for their environments, which are
covered in the rest of this chapter.

The KDE Family of Editors

If you're using a Linux distribution that uses the KDE desktop (see Chapter 1), there are
a couple of options for you when it comes to text editors. The KDE project officially
supports two different text editors:

« KWrite: A single-screen text-editing package
» Kate: A full-featured, multi-window text-editing package

Both of these editors are graphical text editors that contain many advanced features.
The Kate editor provides more advanced features, plus extra niceties not often found in
standard text editors. This section describes each of the editors and shows some of the
features that you can use to help with your shell script editing.

The KWrite Editor

The basic editor for the KDE environment is KWrite. It provides simple word-processing-
style text editing, along with support for code syntax highlighting and editing. The
default KWrite editing window is shown in Figure 9.5.

Figure 9.5 The default KWrite window editing a shell script program

1 () tfactorialsh — KWrite = (=)
File Edit Vew Tools Ssttings Help

 H H 44 O

New Open Save Saveds Close | Undo

] »

factorial=l
number=5

for ((i=1; 1 <= fnumber. 1++ })

i
factorial="expr $factorial * $1°

echo The factorial of Snumber 1s $factorial |

<2

|
Ling: 11 Col: 45 INS LINE Bash factorial.sh

You can't tell from Figure 9.5, but the KWrite editor recognizes several types of
programming languages and uses color coding to distinguish constants, functions, and
comments. Also, notice that the for loop has an icon that links the opening and closing
braces. This is called a folding marker. By clicking the icon, you can collapse the
function into a single line. This is a great feature when working through large
applications.

232

The Linux Command Line & Shell Scripting Bible 2™ Edition

Chapter 10

Basic Script Building

In This Chapter

» Basic script building
* Using multiple commands
» Creating a script file

Now that we've covered the basics of the Linux system and the command line, it's time
to start coding. This chapter discusses the basics of writing shell scripts. You'll need to
know these basic concepts before you can start writing your own shell script
masterpieces.

Using Multiple Commands

245

The Linux Command Line & Shell Scripting Bible 2™ Edition

So far you've seen how to use the command line interface (CLI) prompt of the shell to
enter commands and view the command results. The key to shell scripts is the ability to
enter multiple commands and process the results from each command, even possibly
passing the results of one command to another. The shell allows you to chain commands
together into a single step.

If you want to run two commands together, you can enter them on the same prompt
line, separated with a semicolon:

$ date ; who

Mon Feb 21 15:36:09 EST 2011

Christine tty2 2011-02-21 15:26
Samantha tty3 2011-02-21 15:26
Timothy ttyl 2011-02-21 15:26

user tty7 2011-02-19 14:03 (:0)
user pts/0 2011-02-21 15:21 (:0.0)
$

Congratulations, you just wrote a shell script! This simple script uses just two bash
shell commands. The datecommand runs first, displaying the current date and time,
followed by the output of the who command, showing who is currently logged on to the
system. Using this technique, you can string together as many commands as you wish,
up to the maximum command line character count of 255 characters.

While using this technique is fine for small scripts, it has a major drawback in that you
have to enter the entire command at the command prompt every time you want to run
it. Instead of having to manually enter the commands onto a command line, you can
combine the commands into a simple text file. When you need to run the commands,
just simply run the text file.

Creating a Script File

To place shell commands in a text file, first you'll need to use a text editor (see Chapter
9) to create a file, then enter the commands into the file.

When creating a shell script file, you must specify the shell you are using in the first
line of the file. The format for this is:

#!/bin/bash

In a normal shell script line, the pound sign (#) is used as a comment line. A comment
line in a shell script isn't processed by the shell. However, the first line of a shell script
file is a special case, and the pound sign followed by the exclamation point tells the
shell what shell to run the script under (yes, you can be using a bash shell and run your
script using another shell).

After indicating the shell, commands are entered onto each line of the file, followed by
a carriage return. As mentioned, comments can be added by using the pound sign. An
example looks like this:

#!/bin/bash

This script displays the date and who's logged on

246

The Linux Command Line & Shell Scripting Bible 2™ Edition

date
who

And that's all there is to it. You can use the semicolon and put both commands on the
same line if you want to, but in a shell script, you can list commands on separate lines.
The shell will process commands in the order in which they appear in the file.

Also notice that another line was included that starts with the pound symbol and adds
a comment. Lines that start with the pound symbol (other than the first #! line) aren't
interpreted by the shell. This is a great way to leave comments for yourself about what's
happening in the script, so when you come back to it two years later you can easily
remember what you did.

Save this script in a file called testl, and you are almost ready. There are still a
couple of things to do before you can run your new shell script file.

If you try running the file now, you'll be somewhat disappointed to see this:

$ testl

bash: testl: command not found

$

The first hurdle to jump is getting the bash shell to find your script file. If you
remember from Chapter 5, the shell uses an environment variable called PATH to find
commands. A quick look at the PATH environment variable demonstrates our problem:

$ echo $PATH

/usr/kerberos/sbin:/usr/kerberos/bin:/usr/local/bin:/usr/bin

:/bin:/usr/local/sbin:/usr/sbin:/sbin:/home/user/bin $

The PATH environment variable is set to look for commands only in a handful of
directories. To get the shell to find the test1 script, we need to do one of two things:

» Add the directory where our shell script file is located to the PATH environment
variable.

» Use an absolute or relative filepath to reference our shell script file in the prompt.
Tip
Some Linux distributions add the $HOME/bin directory to the PATH environment variable. This

creates a place in every user's HOME directory to place files where the shell can find them to
execute.

For this example, we'll use the second method to tell the shell exactly where the script
file is located. Remember that to reference a file in the current directory, you can use
the single dot operator in the shell:

$./testl
bash: ./testl: Permission denied
$

Now the shell found the shell script file just fine, but there's another problem. The
shell indicated that you don't have permission to execute the file. A quick look at the file
permissions should show what's going on here:

$ 1s -1 testl

-rw-r--r-- 1 user user 73 Sep 24 19:56 testl

$

247

The Linux Command Line & Shell Scripting Bible 2™ Edition

When the new testl file was created, the umask value determined the default
permission settings for the new file. Because the umask variable is set to 022 (see
Chapter 6), the system created the file with only read/write permissions for the file's
owner.

The next step is to give the file owner permission to execute the file, using
the chmod command (see Chapter 6):

$ chmod u+x testl

$./testl

Mon Feb 21 15:38:19 EST 2011

Christine tty2 2011-02-21 15:26
Samantha tty3 2011-02-21 15:26

Timothy ttyl 2011-02-21 15:26

user tty7 2011-02-19 14:03 (:0)
user pts/0 2011-02-21 15:21 (:0.0) $

Success! Now all of the pieces are in the right places to execute the new shell script
file.

Displaying Messages

Most shell commands produce their own output, which is displayed on the console
monitor where the script is running. Many times, however, you will want to add your
own text messages to help the script user know what is happening within the script. You
can do this with the echo command. The echo command can display a simple text
string if you add the string following the command:

$ echo This is a test

This is a test

$

Notice that by default you don't need to use quotes to delineate the string you're
displaying. However, sometimes this can get tricky if you are using quotes within your
string:

$ echo Let's see if this'll work

Lets see if thisll work

$

The echo command uses either double or single quotes to delineate text strings. If
you use them within your string, you need to use one type of quote within the text and
the other type to delineate the string:

$ echo “This is a test to see if you're paying attention”

This is a test to see if you're paying attention

$ echo ‘Rich says “scripting is easy”.’

Rich says “scripting is easy”.

$

Now all of the quotation marks appear properly in the output.

You can add echo statements anywhere in your shell scripts where you need to
display additional information:

248

The Linux Command Line & Shell Scripting Bible 2™ Edition

$ cat testl

#!/bin/bash

This script displays the date and who's logged on
echo The time and date are:

date

echo “Let's see who's logged into the system:”

who

$

When you run this script, it produces the following output:
$./testl

The time and date are:
Mon Feb 21 15:41:13 EST 2011
Let's see who's logged into the system:

Christine tty2 2011-02-21 15:26
Samantha tty3 2011-02-21 15:26
Timothy ttyl 2011-02-21 15:26

user tty7 2011-02-19 14:03 (:0)
user pts/0 2011-02-21 15:21 (:0.0)
$

That's nice, but what if you want to echo a text string on the same line as a command
output? You can use the -nparameter for the echo statement to do that. Just change
the first echo statement line to this:

echo -n “The time and date are: ”

You'll need to use quotes around the string to ensure that there's a space at the end
of the echoed string. The command output begins exactly where the string output stops.
The output will now look like this:

$./testl
The time and date are: Mon Feb 21 15:42:23 EST 2011
Let's see who's logged into the system:

Christine tty2 2011-02-21 15:26
Samantha tty3 2011-02-21 15:26
Timothy ttyl 2011-02-21 15:26

user tty7 2011-02-19 14:03 (:0)
user pts/0 2011-02-21 15:21 (:0.0)
$

Perfect! The echo command is a crucial piece of shell scripts that interact with users.
You'll find yourself using it in many situations, especially when you want to display the
values of script variables. Let's look at that next.

Using Variables

Just running individual commands from the shell script is useful, but this has its
limitations. Often you'll want to incorporate other data in your shell commands to
process information. You can do this by using variables. Variables allow you to

249

The Linux Command Line & Shell Scripting Bible 2™ Edition

temporarily store information within the shell script for use with other commands in the
script. This section shows how to use variables in your shell scripts.

Environment Variables

You've already seen one type of Linux variable in action. Chapter 5 described the
environment variables available in the Linux system. You can access these values from
your shell scripts as well.

The shell maintains environment variables that track specific system information,
such as the name of the system, the name of the user logged in to the system, the
user's system ID (called UID), the default home directory of the user, and the search
path used by the shell to find programs. You can display a complete list of active
environment variables available by using the set command:

$ set

BASH=/bin/bash

HOME=/home/Samantha
HOSTNAME=1ocalhost.localdomain
HOSTTYPE=1386

IFS=$‘ \t\n’

IMSETTINGS INTEGRATE DESKTOP=yes
IMSETTINGS MODULE=none

LANG=en US.utf8
LESSOPEN="|/usr/bin/lesspipe.sh %s’
LINES=24

LOGNAME=Samantha

You can tap into these environment variables from within your scripts by using the
environment variable's name preceded by a dollar sign. This is demonstrated in the
following script:

$ cat test2

#!/bin/bash

display user information from the system.

echo “User info for userid: $USER”

echo UID: $UID

echo HOME: $HOME

$

The $USER, $UID, and $HOME environment variables are used to display the pertinent
information about the logged-in user. The output should look something like this:

$chmod u+x test2

$./test2

User info for userid: Samantha

UID: 16001

HOME: /home/Samantha

$ 3

250

The Linux Command Line & Shell Scripting Bible 2™ Edition

Notice that the environment variables in the echo commands are replaced by their
current values when the script is run. Also notice that we were able to place
the $USER system variable within the double quotation marks in the first string, and the
shell script was still able to figure out what we meant. There is a drawback to using this
method, however. Look at what happens in this example:

$ echo “The cost of the item is $15”

The cost of the item is 5

That is obviously not what was intended. Whenever the script sees a dollar sign within
quotes, it assumes you're referencing a variable. In this example the script attempted to
display the variable $1 (which was not defined), and then the number 5. To display an
actual dollar sign, you must precede it with a backslash character:

$ echo “The cost of the item is \$15”

The cost of the item is $15

That's better. The backslash allowed the shell script to interpret the dollar sign as an
actual dollar sign, and not a variable. The next section shows how to create your own
variables in your scripts.

Note

You may also see variables referenced using the format ${variable}. The extra braces
around the variable name are often used to help identify the variable name from the dollar
sign.

User Variables

In addition to the environment variables, a shell script allows you to set and use your
own variables within the script. Setting variables allows you to temporarily store data
and use it throughout the script, making the shell script more like a real computer
program.

User variables can be any text string of up to 20 letters, digits, or an underscore
character. User variables are case sensitive, so the variable Varl is different from the
variable varl. This little rule often gets novice script programmers in trouble.

Values are assigned to user variables using an equal sign. No spaces can appear
between the variable, the equal sign, and the value (another trouble spot for novices).
Here are a few examples of assigning values to user variables:

varl=10

var2=-57

var3=testing

var4="“still more testing”

The shell script automatically determines the data type used for the variable value.
Variables defined within the shell script maintain their values throughout the life of the
shell script but are deleted when the shell script completes.

Just like system variables, user variables can be referenced using the dollar sign:
$ cat test3

#!/bin/bash

testing variables

251

The Linux Command Line & Shell Scripting Bible 2™ Edition

days=10

guest=“Katie”

echo “$guest checked in $days days ago”

days=5

guest=“Jessica”

echo “$guest checked in $days days ago”

$

Running the script produces the following output:

$ chmod u+x test3

$./test3

Katie checked in 10 days ago

Jessica checked in 5 days ago

$

Each time the variable is referenced, it produces the value currently assigned to it. It's
important to remember that when referencing a variable value you use the dollar sign,
but when referencing the variable to assign a value to it, you do not use the dollar sign.
Here's an example of what | mean:

$ cat test4

#!/bin/bash

assigning a variable value to another variable

valuel=10

value2=%$valuel

echo The resulting value is $value2

$

When you use the value of the valuel variable in the assignment statement, you
must still use the dollar sign. This code produces the following output:

$ chmod u+x test4

$./test4
The resulting value is 10
$

If you forget the dollar sign, and make the value2 assignment line look like:
value2=valuel

you get the following output:

$./test4
The resulting value is valuel
$

Without the dollar sign the shell interprets the variable name as a normal text string,
which is most likely not what you wanted.

The Backtick

One of the most useful features of shell scripts is the lowly back quote character, usually
called the backtick (‘) in the Linux world. Be careful—this is not the normal single

252

The Linux Command Line & Shell Scripting Bible 2™ Edition

quotation mark character you are used to using for strings. Because it is not used very
often outside of shell scripts, you may not even know where to find it on your keyboard.
You should become familiar with it, because it's a crucial component of many shell
scripts. Hint: On a U.S. keyboard, it is usually on the same key as the tilde symbol (~).

The backtick allows you to assign the output of a shell command to a variable. While
this doesn't seem like much, it is @ major building block in script programming.

You must surround the entire command line command with backtick characters:

testing=‘date’

The shell runs the command within the backticks and assigns the output to the
variable testing. Here's an example of creating a variable using the output from a
normal shell command:

$ cat testbS

#!/bin/bash

using the backtick character

testing=‘date’

echo “The date and time are: " $testing

$

The variable testing receives the output from the date command, and it is used in
the echo statement to display it. Running the shell script produces the following output:

$ chmod u+x test5

$./testh
The date and time are: Mon Jan 31 20:23:25 EDT 2011
$

That's not all that exciting in this example (you could just as easily just put the
command in the echostatement), but once you capture the command output in a
variable, you can do anything with it.

Here's a popular example of how the backtick is used to capture the current date and
use it to create a unique filename in a script:

#!/bin/bash

copy the /usr/bin directory listing to a log file

today=‘date +%y%sm%d’

1s /usr/bin -al > log.$today

The today variable is assigned the output of a formatted date command. This is a
common technique used to extract date information for log filenames. The +%y%m
%d format instructs the date command to display the date as a two-digit year, month,
and day:

$ date +%y%m%d

110131

$

The script assigns the value to a variable, which is then used as part of a filename.
The file itself contains the redirected output (discussed later in the “Redirecting Input
and Output” section) of a directory listing. After running the script, you should see a new
file in your directory:

-rw-r--r-- 1 user user 769 Jan 31 10:15 log.110131

253

The Linux Command Line & Shell Scripting Bible 2™ Edition

The log file appears in the directory using the value of the $today variable as part of
the filename. The contents of the log file are the directory listing from
the /usr/bin directory. If the script is run the next day, the log filename will
be log.110201, thus creating a new file for the new day.

Redirecting Input and Output

There are times when you'd like to save the output from a command instead of just
having it displayed on the monitor. The bash shell provides a few different operators
that allow you to redirect the output of a command to an alternative location (such as
a file). Redirection can be used for input as well as output, redirecting a file to a
command for input. This section describes what you need to do to use redirection in
your shell scripts.

Output Redirection

The most basic type of redirection is sending output from a command to a file. The bash
shell uses the greater-than symbol (>) for this:

command > outputfile

Anything that would appear on the monitor from the command instead is stored in the
output file specified:

$ date > test6

$ ls -1 testb

-rw-r--r-- 1 user user 29 Feb 10 17:56 test6
$ cat testé6

Thu Feb 10 17:56:58 EDT 2011

$

The redirect operator created the file test6 (using the default umask settings) and
redirected the output from the date command to the test6 file. If the output file
already exists, the redirect operator overwrites the existing file with the new file data:

$ who > testb6

$ cat test6
user pts/0 Feb 10 17:55
$

Now the contents of the test6 file contain the output from the who command.

Sometimes, instead of overwriting the file's contents, you may need to append output
from a command to an existing file, for example if you're creating a log file to document
an action on the system. In this situation, you can use the double greater-than symbol
(>>) to append data:

$ date >> testb

$ cat testb6

user pts/0 Feb 10 17:55
Thu Feb 10 18:02:14 EDT 2011

$

254

The Linux Command Line & Shell Scripting Bible 2™ Edition

The test6 file still contains the original data from the who command processed
earlier—plus now it contains the new output from the date command.

Input Redirection

Input redirection is the opposite of output redirection. Instead of taking the output of a
command and redirecting it to a file, input redirection takes the content of a file and
redirects it to a command.

The input redirection symbol is the less-than symbol (<):

command < inputfile

The easy way to remember this is that the command is always listed first in the
command line, and the redirection symbol “points” to the way the data is flowing. The
less-than symbol indicates that the data is flowing from the input file to the command.

Here's an example of using input redirection with the wc command:

$ wc < test6

2 11 60

$

The wc command provides a count of text in the data. By default, it produces three
values:

* The number of lines in the text
» The number of words in the text
* The number of bytes in the text

By redirecting a text file to the wc command, you can get a quick count of the lines,
words, and bytes in the file. The example shows that there are 2 lines, 11 words, and 60
bytes in the testb6 file.

There's another method of input redirection, called inline input redirection. This
method allows you to specify the data for input redirection on the command line instead
of in a file. This may seem somewhat odd at first, but there are a few applications for
this process (such as those shown in the “Performing Math” section later).

The inline input redirection symbol is the double less-than symbol (<<). Besides this
symbol, you must specify a text marker that delineates the beginning and end of the
data used for input. You can use any string value for the text marker, but it must be the
same at the beginning of the data and the end of the data:

command << marker

data

marker

When using inline input redirection on the command line, the shell will prompt for
data using the secondary prompt, defined in the PS2 environment variable (see Chapter
5). Here's how this looks when you use it:

$ wc << EOF

> test string 1

> test string 2

> test string 3

255

The Linux Command Line & Shell Scripting Bible 2™ Edition

> EOF

3 9 42

$

The secondary prompt continues to prompt for more data until you enter the string
value for the text marker. Thewc command performs the line, word, and byte counts of
the data supplied by the inline input redirection.

Pipes

There are times when you need to send the output of one command to the input of
another command. This is possible using redirection, but somewhat clunky:
$ rpm -ga > rpm.list
$ sort < rpm.list
abrt-1.1.14-1.fc14.i686
abrt-addon-ccpp-1.1.14-1.fc14.1686
abrt-addon-kerneloops-1.1.14-1.fc14.i686
abrt-addon-python-1.1.14-1.fc14.1686
abrt-desktop-1.1.14-1.fcl4.1686
abrt-qui-1.1.14-1.fcl14.i686
abrt-1libs-1.1.14-1.fcl14.i686
abrt-plugin-bugzilla-1.1.14-1.fc14.i686
abrt-plugin-logger-1.1.14-1.fcl4.i686
abrt-plugin-runapp-1.1.14-1.fc14.1686
acl-2.2.49-8.fcl14.i686

The rpm command manages the software packages installed on systems using the
Red Hat Package Management system (RPM), such as the Fedora system as shown.
When used with the -qa parameters, it produces a list of the existing packages
installed, but not necessarily in any specific order. If you're looking for a specific
package, or group of packages, it can be difficult to find it using the output of
the rpm command.

Using the standard output redirection, the output was redirected from
the romcommand to a file, called rpm.list. After the command finished,
the rpm. list file contained a list of all the installed software packages on my system.
Next, input redirection was used to send the contents of the rpm.list file to
the sort command to sort the package names alphabetically.

That was useful, but again, a somewhat clunky way of producing the information.
Instead of redirecting the output of a command to a file, you can redirect the output to
another command. This process is called piping.

Like the backtick (‘), the symbol for piping is not used often outside of shell scripting.

The symbol is two vertical lines, one above the other. However, the pipe symbol often
looks like a single vertical line in print (|). On a U.S. keyboard, it is usually on the same

256

The Linux Command Line & Shell Scripting Bible 2™ Edition

key as the backslash (\). The pipe is put between the commands to redirect the output
from one to the other:

commandl | command2

Don't think of piping as running two commands back to back. The Linux system
actually runs both commands at the same time, linking them together internally in the
system. As the first command produces output, it's sent immediately to the second
command. No intermediate files or buffer areas are used to transfer the data.

Now, using piping you can easily pipe the output of the rpm command directly to
the sort command to produce your results:

$ rpm -ga | sort

abrt-1.1.14-1.fc14.i686

abrt-addon-ccpp-1.1.14-1.fcl4.1686

abrt-addon-kerneloops-1.1.14-1.fc14.1686

abrt-addon-python-1.1.14-1.fc14.1686

abrt-desktop-1.1.14-1.fc14.1686

abrt-qui-1.1.14-1.fcl4.1686

abrt-libs-1.1.14-1.fcl14.1686

abrt-plugin-bugzilla-1.1.14-1.fc14.1686

abrt-plugin-logger-1.1.14-1.fc14.1686

abrt-plugin-runapp-1.1.14-1.fc14.i1686

acl-2.2.49-8.fc14.1686

Unless you're a (very) quick reader, you probably couldn't keep up with the output
generated by this command. Because the piping feature operates in real time, as soon
as the rpm command produces data, the sort command gets busy sorting it. By the
time the rpm command finishes outputting data, the sort command already has the
data sorted and starts displaying it on the monitor.

There's no limit to the number of pipes you can use in a command . You can continue
piping the output of commands to other commands to refine your operation.

In this case, because the output of the sort command zooms by so quickly, you can
use one of the text paging commands (such as less or more) to force the output to
stop at every screen of data:

$ rpm -ga | sort | more

This command sequence runs the rpmcommand, pipes the output to
the sort command, and then pipes that output to the more command to display the
data, stopping after every screen of information. This now lets you pause and read
what's on the display before continuing, as shown in Figure 10.1.

Figure 10.1 Using piping to send data to the more command

257

The Linux Command Line & Shell Scripting Bible 2™ Edition

[

File Edit View Search Terminal Help

abrt-1.1.14-1.fcl14.i686
abrt-addon-ccpp-1.1.14-1.c14.1686
abrt-addon-kerneloops-1.1.14-1, fcl4, 1686
abrt-addon-python-1.1.14-1.fcl4.1686
abrt-desktop-1.1.14-1.fcl4,i686
abrt-gui-1.1.14-1.7c14.1686
abrt-1ibs-1,1.14-1.7cl4.1686
abrt-plugin-bugzilla-1.1.14-1.fc14.1686
abrt-plugin-logger-1.1.14-1.fc14.1686
abrt-plugin-runapp-1.1.14-1.Tcl4.1686
acl-2.2.49-8.fc14.1686
alsa-firmware-1.0.23-1.fcl4.noarch
alsa-1ib-1.08.23-2.fc14.1686
alsa-plugins-pulseaudio-1.0.22-1.fc13.1686
alsa-tools-firmware-1.8.23-1.fcl4.1686
alsa-utils-1.8.23-3.7c14.1686
anaconda-14.22-1.fc14.1686
anaconda-yum-plugins-1.8-5,.fcl2.noarch
anthy-9100h-15, fc14. 1686
apr-1.3.9-3.fcl3.1686
apr-util-1.3.16-1.fcl4.1686
apr-util-ldap-1.3.168-1.fcl4.i686
argl7e-firmware-2009.05.28-2.fcl3.noarch

e

To get even fancier, you can use redirection along with piping to save your output to a

file:
$ rpm -ga | sort > rpm.list
$ more rpm.list
abrt-1.1.14-1.fc14.i686
abrt-addon-ccpp-1.1.14-1.fc14.1686

abrt-addon-kerneloops-1.1.14-1.fc14.1686
abrt-addon-python-1.1.14-1.fc14.1686

abrt-desktop-1.1.14-1.fcl4.1686
abrt-qui-1.1.14-1.fcl4.1i686
abrt-1libs-1.1.14-1.fc14.i686

abrt-plugin-bugzilla-1.1.14-1.fcl14.i686
abrt-plugin-logger-1.1.14-1.fc14.1686
abrt-plugin-runapp-1.1.14-1.fc14.1686

acl-2.2.49-8.fcl4.1686

As expected, the data in the rpm. list file is now sorted!
By far one of the most popular uses of piping is piping the results of commands that

produce long output to themore command. This
the 1s command, as shown in Figure 10.2.

is especially common with

Figure 10.2 Using the more command with the Is command

258

The Linux Command Line & Shell Scripting Bible 2™ Edition

i “user@localhosti~
File Edit View Terminal Help
total 2276 Yy
drwxr-xr-x. 3 root root 4096 Sep 15 17:55 abrt
drwxr-xr-x. 4 root root 4996 Sep 14 28:44 acpl
-rw-r--r--. 1 root root 45 Sep 21 14:27 adjtime
-rw-r--r--. 1 root root 1512 May 24 08:32 aliases
-rw-r-----. 1 root smmsp 12288 Sep 14 208:43 aliases.db
drwxr-xr-x. 2 root root 4896 Sep 15 18:01 alsa
drwxr-xr-x. 2 root root 4096 Sep 15 18:16 alternatives
-m-r--r--. 1 root root 541 Aug 13 09:52 anacrontab
-fw-r--r--. 1 root root 245 May 18 @87:17 anthy-conf
-rw-r--r--. 1 root root 148 Sep 18 2888 asound.conf
- . 1 root root 1 Mar 19 2010 at.deny
drwxr-x---. 3 root root 4096 Sep 14 20:30 audisp
drwxr-x---. 2 root root 4096 Sep 14 20:30 audit
drwxr-xr-x. 4 root root 4896 Sep 15 17:53 avahi
drwxr-xr-x, 2 root root 4096 Sep 15 18:15 bash completion.d
=rw-r--r--. 1 root root 2615 May 24 08:32 bashrc
drwxr-xr-x. 2 root root 4096 Aug 5 06:45 blkid
drwxr-xr-x., 2 root root 4096 Sep 15 18:02 bluetooth

drwxr-xr-x. 2 root root 4896 Sep 14 28:27 bonobo-activation
-TW-T--r--. 1 root root 788 Aug 2 18:58 cgconfig.conf
-m-r--r--. 1 root root 1785 Aug 2 18:58 cgrules.conf
drwxr-xr-x. 2 root root 4096 Mar 4 2010 chkconfig.d

The ls -1 command produces a long listing of all the files in the directory. For
directories with lots of files, this can be quite a listing. By piping the output to
the more command, you force the output to stop at the end of every screen of data.

Performing Math

Another feature crucial to any programming language is the ability to manipulate
numbers. Unfortunately, for shell scripts this process is a bit awkward. There a two
different ways to perform mathematical operations in your shell scripts.

The expr Command

Originally, the Bourne shell provided a special command that was used for processing
mathematical equations. Theexpr command allowed the processing of equations from
the command line, but it is extremely clunky:

$ expr 1 +5

6

The expr command recognizes a few different mathematical and string operators,
shown in Table 10.1.

Table 10.1 The expr Command Operators

‘Operator ‘ ‘Description ‘
‘ARGl | ARG2 HReturn ARGL1 if neither argument is null or zero; otherwise, return ARG2. ‘
‘ARGl & ARG2 HReturn ARGL1 if neither argument is null or zero; otherwise, return 0. ‘
‘ARGl < ARG2 HReturn 1 if ARG1 is less than ARG2; otherwise, return 0. ‘
‘ARGl <= ARG2 HReturn 1 if ARG1 is less than or equal to ARG2; otherwise, return 0. ‘
‘ARGl = ARG2 HReturn 1 if ARG1 is equal to ARG2; otherwise, return 0. ‘
‘ARGl = ARG2 HReturn 1 if ARG1 is not equal to ARG2; otherwise, return 0. ‘
‘ARGl >= ARG2 HReturn 1 if ARG1 is greater than or equal to ARG2; otherwise, return 0. ‘

The Linux Command Line & Shell Scripting Bible 2™ Edition

‘ARGl > ARG2 HReturn 1 if ARG1 is greater than ARG2; otherwise, return 0. ‘
ARGL + ARG2 Return the arithmetic sum of ARG1 and ARG2. |
‘ARGl - ARG2 HReturn the arithmetic difference of ARG1 and ARG2. ‘
‘ARGl * ARG2 HReturn the arithmetic product of ARG1 and ARG2. ‘
‘ARGl / ARG2 HReturn the arithmetic quotient of ARG1 divided by ARG2. ‘
‘ARGl % ARG2 HReturn the arithmetic remainder of ARG1 divided by ARG2. ‘
STRING : REGEXP Return the pattern match if REGEXP matches a pattern in STRING. |

|

match STRING REGEXP Return the pattern match if REGEXP matches a pattern in STRING.
substr STRING POS

Return the substring LENGTH characters in length, starting at position POS (starting

LENGTH at 1).

\index STRING CHARS HReturn position in STRING where CHARS is found; otherwise, return 0. ‘
‘lengt h STRING HReturn the numeric length of the string STRING. ‘
‘+ TOKEN Hlnterpret TOKEN as a string, even if it's a keyword. ‘
(EXPRESSION) 'Return the value of EXPRESSION. |

While the standard operators work fine in the expr command, the problem occurs
when using them from a script or the command line. Many of the expr command
operators have other meanings in the shell (such as the asterisk). Using them in
the expr command produces odd results:

$ expr 5 * 2
expr: syntax error
$

To solve this problem, you need to use the shell escape character (the backslash) to
identify any characters that may be misinterpreted by the shell before being passed to
the expr command:

$ expr 5 * 2

10

$

Now that's really starting to get ugly! Using the expr command in a shell script is
equally cumbersome:

$ cat test6

#!/bin/bash

An example of using the expr command

varl=10

var2=20

var3=‘expr $var2 / $varl’

echo The result is $var3

To assign the result of a mathematical equation to a variable, you have to use the
backtick character to extract the output from the expr command:

$ chmod u+x test6

$./testb
The result is 2
$

260

The Linux Command Line & Shell Scripting Bible 2™ Edition

Fortunately, the bash shell has an improvement for processing mathematical
operators as you shall see in the next section.

Using Brackets

The bash shell includes the expr command to stay compatible with the Bourne shell;
however, it also provides a much easier way of performing mathematical equations. In
bash, when assigning a mathematical value to a variable, you can enclose the
mathematical equation using a dollar sign and square brackets ($[operation]):

$ varl=$[1 + 5]

$ echo $varl

6

$ var2 = $[$varl * 2]

$ echo $var2

12

$

Using brackets makes shell math much easier than with the expr command. This
same technique also works in shell scripts:

$ cat test7

#!/bin/bash

varl=100

var2=50

var3=45

vard=$[$varl * ($var2 - $var3)]

echo The final result is $var4

$

Running this script produces the output:

$ chmod u+x test7

$./test7
The final result is 500
$

Also, notice that when using the square brackets method for calculating equations you
don't need to worry about the multiplication symbol, or any other characters, being
misinterpreted by the shell. The shell knows that it's not a wildcard character because it
is within the square brackets.

There's one major limitation to performing math in the bash shell script. Take a look at
this example:

$ cat test8

#!/bin/bash

varl=100

var2=45

var3=$[$varl / $var2]

echo The final result is $var3

$

Now run it and see what happens:

261

The Linux Command Line & Shell Scripting Bible 2™ Edition

$ chmod u+x test8

$./test8
The final result is 2
$

The bash shell mathematical operators support only integer arithmetic. This is a huge
limitation if you're trying to do any sort of real-world mathematical calculations.

Note

The z shell (zsh) provides full floating-point arithmetic operations. If you require floating-
point calculations in your shell scripts, you might consider checking out the z shell
(discussed in Chapter 22)

A Floating-Point Solution

There are several solutions for overcoming the bash integer limitation. The most popular
solution uses the built-in bash calculator, called bc.

The Basics of bc

The bash calculator is actually a programming language that allows you to enter
floating-point expressions at a command line and then interprets the expressions,
calculates them, and returns the result. The bash calculator recognizes:

* Numbers (both integer and floating point)

» Variables (both simple variables and arrays)

+ Comments (lines starting with a pound sign or the C language /* */ pair
» Expressions

* Programming statements (such as if-then statements)

» Functions

You can access the bash calculator from the shell prompt using the bc command:
$ bc
bc 1.06.95

Copyright 1991-1994, 1997, 1998, 2000, 2004, 2006 Free Software Foundation, I
nc.

This is free software with ABSOLUTELY NO WARRANTY.

For details type ‘warranty’.

12 * 5.4

64.8

3.156 * (3 + 5)

25.248

quit

$

The example starts out by entering the expression 12 * 5.4. The bash calculator
returns the answer. Each subsequent expression entered into the calculator is
evaluated, and the result is displayed. To exit the bash calculator, you must enter quit.

262

The Linux Command Line & Shell Scripting Bible 2™ Edition

The floating-point arithmetic is controlled by a built-in variable called scale. You
must set this value to the desired number of decimal places you want in your answers
or you won't get what you were looking for:

$ bc -q

3.44 / 5

0

scale=4

3.44 / 5

.6880

quit

$

The default value for the scale variable is zero. Before the scale value is set, the
bash calculator provides the answer to =zero decimal places. After you set
the scale variable value to four, the bash calculator displays the answer to four
decimal places. The -g command line parameter suppresses the lengthy welcome
banner from the bash calculator.

In addition to normal numbers, the bash calculator also understands variables:

$ bc -q

varl=10

varl * 4

40

var2 = varl / 5

print var2

2

quit

$

Once a variable value is defined, you can use the variable throughout the bash
calculator session. The printstatement allows you to print variables and numbers.

Using bc in Scripts

Now you may be wondering how the bash calculator is going to help you with floating-
point arithmetic in your shell scripts. Do you remember your friend the backtick
character? Yes, you can use the backtick character to run a bccommand and assign the
output to a variable! The basic format to use is this:

variable=‘echo “options; expression” | bc’

The first portion, options, allows you to set variables. If you need to set more than
one variable, separate them using the semicolon. The expression parameter defines the
mathematical expression to evaluate using bc. Here's a quick example of doing this in a
script:

$ cat test9

#!/bin/bash

varl=‘echo “ scale=4; 3.44 / 5" | bc’

echo The answer is $varl

$

263

The Linux Command Line & Shell Scripting Bible 2™ Edition

This example sets the scale variable to four decimal places and then specifies a
specific calculation for the expression. Running this script produces the following output:
$ chmod u+x test9

$./test9
The answer is .6880
$

Now that's fancy! You aren't limited to just using numbers for the expression value.
You can also use variables defined in the shell script:

$ cat testl0

#!/bin/bash

varl=100

var2=45

var3=‘echo “scale=4; $varl / $var2” | bc’
echo The answer for this is $var3

$

The script defines two variables, which are used within the expression sent to
the bc command. Remember to use the dollar sign to signify the value for the variables
and not the variables themselves. The output of this script is as follows:

$./testl0
The answer for this is 2.2222
$

And of course, once a value is assigned to a variable, that variable can be used in yet
another calculation:

$ cat testll

#!/bin/bash

varl=20

var2=3.14159

var3=‘echo “scale=4; $varl * $varl” | bc’
vard=‘echo “scale=4; $var3 * $var2” | bc’
echo The final result is $var4

$

This method works fine for short calculations, but sometimes you need to get more
involved with your numbers. If you have more than just a couple of calculations, it gets
confusing trying to list multiple expressions on the same command line.

There's a solution to this problem. The bc command recognizes input redirection,
allowing you to redirect a file to the bc command for processing. However, this also can
get confusing, as you'd need to store your expressions in a file.

The best method is to use inline input redirection, which allows you to redirect data
directly from the command line. In the shell script, you assign the output to a variable:

variable=‘bc << EOF

options

statements

expressions

EOF

264

The Linux Command Line & Shell Scripting Bible 2™ Edition

The EOF text string indicates the beginning and end of the inline redirection data.
Remember that the backtick characters are still needed to assign the output of
the bc command to the variable.

Now you can place all of the individual bash calculator elements on separate lines in
the script file. Here's an example of using this technique in a script:

$ cat testl2

#!/bin/bash

varl=10.46
var2=43.67
var3=33.2
var4=71

var5=‘bc << EOF
scale = 4

al = ($varl * $var2)
bl = ($var3 * $var4)
al + bl

EOF

echo The final answer for this mess is $varb

$

Placing each option and expression on a separate line in your script makes things
cleaner and easier to read and follow. The EOF string indicates the start and end of the
data to redirect to the bc command. Of course, you need to use the backtick characters
to indicate the command to assign to the variable.

You'll also notice in this example that you can assign variables within the bash
calculator. It's important to remember that any variables created within the bash
calculator are valid only within the bash calculator and can't be used in the shell script.

Exiting the Script

So far in our sample scripts, we terminated things pretty abruptly. When we were done
with our last command, we just ended the script. There's a more elegant way of
completing things available to us.

Every command that runs in the shell uses an exit status to indicate to the shell
that it's done processing. The exit status is an integer value between 0 and 255 that's
passed by the command to the shell when the command finishes running. You can
capture this value and use it in your scripts.

265

The Linux Command Line & Shell Scripting Bible 2™ Edition

Checking the exit Status

Linux provides the $7 special variable that holds the exit status value from the last
command that executed. You must view or use the $? variable immediately after the
command you want to check. It changes values to the exit status of the last command
executed by the shell:

$ date

Sat Jan 15 10:01:30 EDT 2011

$ echo $7?

0

$

By convention, the exit status of a command that successfully completes is zero. If a
command completes with an error, then a positive integer value is placed in the exit
status:

$ asdfg

-bash: asdfg: command not found

$ echo $7?

127

$

The invalid command returns an exit status of 127. There's not much of a standard
convention to Linux error exit status codes. However, there are a few guidelines you can
use, as shown in Table 10.2.

Table 10.2 Linux Exit Status Codes

‘Code ‘ ‘Description

‘0 HSuccessful completion of the command
‘1 ‘ ‘General unknown error
‘2 HMisuse of shell command

‘127 HCommand not found

‘128 Hlnvalid exit argument

‘128+x‘ ‘Fatal error with Linux signal x

|
|
|
|
‘126 HThe command can't execute ‘
|
|
|
|

‘130 HCommand terminated with Ctrl+C

‘255 HExit status out of range ‘

An exit status value of 126 indicates that the user didn't have the proper permissions
set to execute the command:

$./myprog.c

-bash: ./myprog.c: Permission denied

$ echo $7?

126

$

Another common error you'll encounter occurs if you supply an invalid parameter to a
command:

$ date %t

266

The Linux Command Line & Shell Scripting Bible 2™ Edition

date: invalid date ‘%t’
$ echo $7?

1

$

This generates the general exit status code of one, indicating an unknown error
occurred in the command.

The exit Command

By default, your shell script will exit with the exit status of the last command in your
script:

$./testb

The result is 2

$ echo $7?

0

$

You can change that to return your own exit status code. The exit command allows
you to specify an exit status when your script ends:

$ cat testl3

#!/bin/bash

testing the exit status

varl=10

var2=30

var3=$[$varl + var2]

echo The answer is $var3

exit 5

$

When you check the exit status of the script, you'll get the value used as the
parameter of the exit command:

$ chmod u+x testl3

$./testl3

The answer is 40

$ echo $7?

5

$

You can also use variables in the exit command parameter:

$ cat testl4d

#!/bin/bash

testing the exit status

varl=10

var2=30

var3=$[$varl + var2]

exit $var3

$

When you run this command, it produces the following exit status:

267

The Linux Command Line & Shell Scripting Bible 2™ Edition

$ chmod u+x testl4

$./testld

$ echo $7?

40

$

You should be careful with this feature, however, as the exit status codes can only go
up to 255. Watch what happens in this example:

$ cat testldb

#!/bin/bash

testing the exit status

varl=10

var2=30

var3=$[$varl * var2]

echo The value is $var3

exit $var3

$

Now when you run it, you get the following:
$./testldb

The value is 300

$ echo $7?

44

$

The exit status code is reduced to fit in the 0 to 255 range. The shell does this by
using modulo arithmetic. Themodulo of a value is the remainder after a division. The
resulting number is the remainder of the specified number divided by 256. In the case of
300 (the result value), the remainder is 44, which is what appears as the exit status
code.

In Chapter 11, you'll see how you can use the if-then statement to check the error
status returned by a command to see if the command was successful or not.

Summary

The bash shell script allows you to string commands together into a script. The most
basic way to create a script is to separate multiple commands on the command line
using a semicolon. The shell executes each command in order, displaying the output of
each command on the monitor.

You can also create a shell script file, placing multiple commands in the file for the
shell to execute in order. The shell script file must define the shell used to run the script.
This is done in the first line of the script file, using the #! symbol, followed by the full
path of the shell.

Within the shell script you can reference environment variable values by using a dollar
sign in front of the variable. You can also define your own variables for use within the
script, and assign values and even the output of a command by using the backtick

268

The Linux Command Line & Shell Scripting Bible 2™ Edition

character. The variable value can be used within the script by placing a dollar sign in
front of the variable name.

The bash shell allows you to redirect both the input and output of a command from
the standard behavior. You can redirect the output of any command from the monitor
display to a file by using the greater-than symbol, followed by the name of the file to
capture the output. You can append output data to an existing file by using two greater-
than symbols. The less-than symbol is used to redirect input to a command. You can
redirect input from a file to a command.

The Linux pipe command (the broken bar symbol) allows you to redirect the output of
a command directly to the input of another command. The Linux system runs both
commands at the same time, sending the output of the first command to the input of
the second command without using any redirect files.

The bash shell provides a couple of ways for you to perform mathematical operations
in your shell scripts. Theexpr command is a simple way to perform integer math. In the
bash shell, you can also perform basic math calculations by enclosing equations in
square brackets, preceded by a dollar sign. To perform floating-point arithmetic, you
need to utilize the bc calculator command, redirecting input from inline data and storing
the output in a user variable.

Finally, the chapter discussed how to use the exit status in your shell script. Every
command that runs in the shell produces an exit status. The exit status is an integer
value between 0 and 255 that indicates if the command completed successfully, and if
not, what the reason may have been. An exit status of 0 indicates that the command
completed successfully. You can use the exit command in your shell script to declare a
specific exit status upon the completion of your script.

So far in your shell scripts, things have proceeded in an orderly fashion from one
command to the next. In the next chapter, you'll see how you can use some logic flow
control to alter which commands are executed within the script.

Chapter 11

Using Structured Commands

269

The Linux Command Line & Shell Scripting Bible 2™ Edition

In This Chapter

» Working with the if-then statement
* The if-then-else statement

* Nesting ifs

* The test command

« Compound condition testing

» Advanced if-then features

* The code command

+ Managing user accounts

In the shell scripts presented in Chapter 10, the shell processed each individual
command in the shell script in the order it appeared. This works out fine for sequential
operations, where you want all of the commands to process in the proper order.
However, this isn't how all programs operate.

Many programs require some sort of logic flow control between the commands in the
script. This means that the shell executes certain commands given one set of
circumstances, but it has the ability to execute other commands given a different set of
circumstances. There is a whole class of commands that allows the script to skip over or
loop through commands based on conditions of variable values or the result of other
commands. These commands are generally referred to as structured commands.

The structured commands allow you to alter the flow of operation of a program,
executing some commands under some conditions while skipping others under other
conditions. There are quite a few structured commands available in the bash shell, so
we'll look at them individually. In this chapter, we look at the if-then statement.

Working with the if-then Statement

The most basic type of structured command is the if-then statement. The if-
then statement has the following format:

if command

then

commands
fi
If you're using if-then statements in other programming languages, this format may
be somewhat confusing. In other programming languages, the object after
the if statement is an equation that is evaluated for a TRUE or FALSEvalue. That's not
how the bash shell if statement works.

The bash shell if statement runs the command defined on the if line. If the exit
status of the command (see Chapter 10) is zero (the command completed successfully),
the commands listed under the then section are executed. If the exit status of the
command is anything else, the then commands aren't executed, and the bash shell
moves on to the next command in the script.

270

The Linux Command Line & Shell Scripting Bible 2™ Edition

Here's a simple example to demonstrate this concept:
$ cat testl

#!/bin/bash

testing the if statement

if date

then

echo “it worked”

fi

This script uses the date command on the if line. If the command completes
successfully, the echo statement should display the text string. When you run this script
from the command line, you'll get the following results:

$./testl

Sat Jan 23 14:09:24 EDT 2011

it worked

$

The shell executed the date command listed on the if line. Since the exit status was
zero, it also executed theecho statement listed in the then section.

Here's another example:
$ cat test2

#!/bin/bash

testing a bad command
if asdfg

then

echo “it did not work”

fi

echo “we are outside of the if statement”

$

$./test2

./test2: line 3: asdfg: command not found

we are outside of the if statement

$

In this example, a command was deliberately used that will not work in
the if statement line. Because this is a bad command, it will produce an exit status
that's non-zero, and the bash shell skips the echo statement in thethen section. Also
notice that the error message generated from running the command in
the if statement still appears in the output of the script. There will be times when you
won't want this to happen. Chapter 14 discusses how this can be avoided.

You are not limited to just one command in the then section. You can list commands
just as in the rest of the shell script. The bash shell treats the commands as a block,
executing all of them when the command in the ifstatement line returns a zero exit
status or skipping all of them when the command returns a non-zero exit status:

$ cat test3

#!/bin/bash

testing multiple commands in the then section

271

The Linux Command Line & Shell Scripting Bible 2™ Edition

testuser=rich
if grep $testuser /etc/passwd
then

echo The bash files for user $testuser are:

ls -a /home/$testuser/.b*

fi

The if statement line uses the grep comment to search the /etc/passwd file to
see if a specific username is currently used on the system. If there's a user with that
logon name, the script displays some text, and then lists the bash files in the
user's HOME directory:

$./test3

rich:x:500:500:Rich Blum:/home/rich:/bin/bash

The files for user rich are:

/home/rich/.bash_history /home/rich/.bash_profile

/home/rich/.bash logout /home/rich/.bashrc

$

However, if you set the testuser variable to a user that doesn't exist on the system,
nothing happens:

$./test3

$
That's not all that exciting. It would be nice if we could display a little message saying

that the username wasn't found on the system. Well, we can, using another feature of
the if-then statement.

Note

You might see an alternative form of the if - then statement used in some scripts:
if command; then

commands

fi
By putting a semicolon at the end of the command to evaluate, you can include
the then statement on the same line, which looks more like how if-then statements are
handled in some other programming languages.

The if-then-else Statement

In the if-then statement, you have only one option of whether or not a command is
successful. If the command returns a non-zero exit status code, the bash shell just
moves on to the next command in the script. In this situation, it would be nice to be able
to execute an alternate set of commands. That's exactly what the if-then-
else statement is for.

The if-then-else statement provides another group of commands in the
statement:

if command

272

The Linux Command Line & Shell Scripting Bible 2™ Edition

then

commands
else

commands

fi

When the command in the if statement line returns with an exit status code of zero,
the commands listed in thethen section are executed, just as in a normal if-
then statement. When the command in the if statement line returns a non-zero exit
status code, the bash shell executes the commands in the else section.

Now you can modify the test script to look like this:

$ cat test4

#!/bin/bash

testing the else section

testuser=badtest

if grep $testuser /etc/passwd

then

echo The files for user $testuser are:

1s -a /home/$testuser/.b*
else

echo “The user name $testuser does not exist on this system”
fi

$

$./test4

The user name badtest does not exist on this system
$

That's more user-friendly. Just like the then section, the else section can contain
multiple commands. The fistatement delineates the end of the else section.

Nesting ifs

Sometimes you must check for several situations in your script code. Instead of having
to write separate if-thenstatements, you can use an alternative version of
the else section, called elif.

The elif continues an else section with another if-then statement:

if commandl

then

commands
elif command2
then

more commands
fi

273

The Linux Command Line & Shell Scripting Bible 2™ Edition

The elif statement line provides another command to evaluate, similar to the
original if statement line. If the exit status code from the elif command is zero, bash
executes the commands in the second then statement section.

You can continue to string elif statements together, creating one huge if-then-
elif conglomeration:

if commandl

then

command set 1

elif command?2
then

command set 2

elif command3
then

command set 3

elif command4
then

command set 4
fi
Each block of commands is executed depending on which command returns the zero
exit status code. Remember, the bash shell will execute the if statements in order, and
only the first one that returns a zero exit status will result in the then section being
executed. Later on in “The case Command” section, you'll see how to use
the casecommand instead of having to nest lots of if-then statements.

The test Command

So far, all you've seen in the if statement line are normal shell commands. You might
be wondering if the bash if-then statement has the ability to evaluate any condition
other than the exit status code of a command.

The answer is no, it can't. However, there's a neat utility available in the bash shell
that helps you evaluate other things, using the if-then statement.

The test command provides a way to test different conditions in an if-
then statement. If the condition listed in the test command evaluates to true,
the test command exits with a zero exit status code, making the if-thenstatement
behave in much the same way that if-then statements work in other programming
languages. If the condition is false, the test command exits with al, which causes
the if-then statement to fail.

The format of the test command is pretty simple:

test condition

The condition is a series of parameters and values that the test command evaluates.
When used in an if-thenstatement, the test command looks like this:

if test condition

274

The Linux Command Line & Shell Scripting Bible 2™ Edition

then
commands
fi
The bash shell provides an alternative way of declaring the test command in an if-
then statement:

if [condition]
then
commands
fi
The square brackets define the condition that's used in the test command. Be

careful; you must have a space after the first bracket and a space before the last
bracket or you'll get an error message.

The test command can evaluate three classes of conditions:
* Numeric comparisons
» String comparisons
 File comparisons

The next sections describe how to use each of these classes of tests in your if-
then statements.

Numeric Comparisons

The most common method for using the test command is to perform a comparison of
two numeric values. Table 11.1shows the list of condition parameters used for testing two
values.

Table 11.1 The test Numeric Comparisons

‘Comparison HDescription

‘nl -eq n2 HCheck if n1 is equal to n2.

‘nl -ge n2 HCheck if n1 is greater than or equal to N2

‘nl -gt n2 HCheck if n1 is greater than n2.

‘nl -le n2 HCheck if n1 is less than or equal to N2.
‘nl -1t n2 HCheck if n1 is less than n2.
‘nl -ne n2 HCheck if n1 is not equal to n2. ‘

The numeric test conditions can be used to evaluate both numbers and variables.
Here's an example of doing that:

$ cat test5

#!/bin/bash

using numeric test comparisons

vall=10

val2=11

if [$vall -gt 5 1

275

The Linux Command Line & Shell Scripting Bible 2™ Edition

then

echo “The test value $vall is greater than 5”
fi

if [$vall -eq $val2]
then

echo “The values are equal”
else

echo “The values are different”

fi

The first test condition:

if [$vall -gt 5]
tests if the value of the variable vall is greater than 5. The second test condition:

if [$vall -eq $val2]
tests if the value of the variable vall is equal to the value of the variable val2. Run the
script and watch the results:

$./testb5

The test value 10 is greater than 5

The values are different

$

Both of the numeric test conditions evaluated as expected.

There is a limitation to the test numeric conditions, however. Try this script:
$ cat testé6

#!/bin/bash

testing floating point numbers

vall=' echo “scale=4; 10 / 3 " | bc’

echo “The test value is $vall”

if [$vall -gt 3]

then

echo “The result is larger than 3"

fi

$

$./testb

The test value is 3.3333

./test6: line 5: [: 3.3333: integer expression expected

$

This example uses the bash calculator to produce a floating-point value, stored in
the vall variable. Next, it uses the test command to evaluate the value. Something
obviously went wrong here.

In Chapter 10, you learned how to trick the bash shell into handling floating-point
values; there's still a problem in this script. The test command wasn't able to handle
the floating-point value that was stored in the vallvariable.

276

The Linux Command Line & Shell Scripting Bible 2™ Edition

Remember that the only numbers the bash shell can handle are integers. When you
utilize the bash calculator, you just fool the shell into storing a floating-point value in a
variable as a string value. This works perfectly fine if all you need to do is display the
result, using an echo statement, but this doesn't work in numeric-oriented functions,
such as our numeric test condition. The bottom line is that you're not able to use
floating-point values in the test command.

String Comparisons

The test command also allows you to perform comparisons on string values.
Performing comparisons on strings can get tricky, as you'll see. Table 11.2 shows the
comparison functions you can use to evaluate two string values.

Table 11.2 The test Command String Comparisons

‘Comparison ‘ tl)escription ‘
strl = str2 Checkif strlis the same as string Str2.

‘St rl !'= str2 HCheck if strl is not the same as str2.
strl < str2 Checkif strlis less than Str2.
‘St rl > str2 HCheck if strl is greater than str2.

-n strl HCheck if strl has a length greater than zero. ‘
-z strl HCheck if strl has a length of zero. ‘

The following sections describe the different string comparisons available.

String Equality
The equal and not equal conditions are fairly self-explanatory with strings. It's pretty
easy to know when two string values are the same or not:

$cat test7

#!/bin/bash

testing string equality

testuser=rich

if [$USER = $testuser]

then
echo “Welcome $testuser”
fi
$
$./test7
Welcome rich
$

Also, using the not equals string comparison, will allow you to determine if two strings
have the same value or not:

$ cat test8

#!/bin/bash

277

The Linux Command Line & Shell Scripting Bible 2™ Edition

testing string equality
testuser=baduser

if [$USER !'= $testuser]
then

echo “This is not $testuser”
else

echo “Welcome $testuser”
fi
$
$./test8
This is not baduser

$

The test comparison takes all punctuation and capitalization into account when
comparing strings for equality.

String Order

Trying to determine if one string is less than or greater than another is where things
start getting tricky. There are two problems that often plague shell programmers when
trying to use the greater-than or less-than features of the test command:

» The greater-than and less-than symbols must be escaped, or the shell will use
them as redirection symbols, with the string values as filenames.

» The greater-than and less-than order is not the same as that used with the sort
command.

The first item can result in a huge problem that often goes undetected when
programming your scripts. Here's a typical example of what sometimes happens to
novice shell script programmers:

$ cat badtest
#!/bin/bash
mis-using string comparisons

vall=baseball
val2=hockey

if [$vall > $val2]
then
echo “$vall is greater than $val2”
else
echo “$vall is less than $val2”
fi
$

278

The Linux Command Line & Shell Scripting Bible 2™ Edition

$./badtest

baseball is greater than hockey

$ s -1 hockey

-rw-r--r-- 1 rich rich 0 Sep 30 19:08 hockey

$

By just using the greater-than symbol itself in the script, no errors are generated, but
the results are wrong. The script interpreted the greater-than symbol as an output
redirection. Thus, it created a file called hockey. Because the redirection completed
successfully, the test command returns a zero exit status code, which the ifstatement
evaluates as though things completed successfully!

To fix this problem, you need to properly escape the greater-than symbol:

$ cat test9

#!/bin/bash

mis-using string comparisons

vall=baseball
val2=hockey

if [$vall \> $val2]
then

echo “$vall is greater than $val2”
else

echo “$vall is less than $val2”

fi

$

$./test9

baseball is less than hockey

$

Now that answer is more along the lines of what you would expect from the string
comparison.

The second issue is a little more subtle, and you may not even run across it unless
you are working with uppercase and lowercase letters. The sort command handles

uppercase letters opposite to the way the test command considers them. Let's test this
feature in a script:

$ cat test9b
#!/bin/bash
testing string sort order
vall=Testing
val2=testing

if [$vall \> $val2]

then

echo “$vall is greater than $val2”

279

The Linux Command Line & Shell Scripting Bible 2™ Edition

else

echo “$vall is less than $val2”

fi

$

$./test9b

Testing is less than testing

$ sort testfile

testing

Testing

$

Capitalized letters are treated as less than lowercase letters in the test command.
However, when you put the same strings in a file and use the sort command, the
lowercase letters appear first. This is due to the ordering technique each command
uses. The test command uses standard ASCIl ordering, using each character's ASCII
numeric value to determine the sort order. The sort command uses the sorting order
defined for the system locale language settings. For the English language, the locale
settings specify that lowercase letters appear before uppercase letters in sorted order.

Caution

Notice that the test command uses the standard mathematical comparison symbols for string
comparisons and text codes for numerical comparisons. This is a subtle feature that many
programmers manage to get reversed. If you use the mathematical comparison symbols for
numeric values, the shell interprets them as string values and may not produce the correct results.

String Size
The -n and -z comparisons are handy when trying to evaluate if a variable contains
data or not:

$ cat testlO

#!/bin/bash

testing string length

vall=testing

val2a=""’

if [-n $vall]
then

n

echo “The string ‘$vall’ is not empty
else

echo “The string ‘$vall’ is empty”
fi

if [-z $val2]

then
echo “The string ‘$val2’ is empty”

280

The Linux Command Line & Shell Scripting Bible 2™ Edition

else

echo “The string ‘$val2’ is not empty”
fi

if [-z $val3]
then

echo “The string ‘$val3’ is empty”
else

echo “The string ‘$val3’ is not empty”

fi

$

$./testlo

The string ‘testing’ is not empty

The string ‘' is empty

The string ‘' is empty

$

This example creates two string variables. The vall variable contains a string, and
the val2 variable is created as an empty string. The following comparisons are made as
shown below:

if [-n $vall]
determines if the vall variable is non-zero in length, which it is, so the then section is
processed:

if [-z $var2]
determines if the val2 variable is zero in length, which it is, so the then section is
processed:

if [-z $val3d]
determines if the val3 variable is zero in length. This variable was never defined in the
shell script, so it indicates that the string length is still zero, even though it wasn't
defined.

Caution

Empty and uninitialized variables can have catastrophic effects on your shell script tests. If you're
not sure of the contents of a variable, it's always best to test if the variable contains a value
using -n or -z before using it in a numeric or string comparison.

File Comparisons

The last category of test comparisons is quite possibly the most powerful and most used
comparisons in shell scripting. The test command allows you to test the status of files
and directories on the Linux filesystem. Table 11.3 lists these comparisons.

Table 11.3 The test Command File Comparisons

‘ ‘Comparison ‘ ‘Description ‘ ‘

-d file HCheck if file exists and is a directory. ”

281

The Linux Command Line & Shell Scripting Bible 2™ Edition

-e file HChecks if file exists. ‘
-f file HChecks if file exists and is a file. ‘
-r file HChecks if file exists and is readable. ‘
-s file HChecks if file exists and is not empty. ‘
-w file HChecks if file exists and is writable. ‘
-x file HChecks if file exists and is executable. ‘
-0 file HChecks if file exists and is owned by the current user. ‘
-G file HChecks if file exists and the default group is the same as the current user. ‘
filel -nt file2|Checks if filel is newer than file2. |
filel -ot file2|Checks if filel is older than file2. |

These conditions give you the ability to check files in your filesystem within your shell
scripts, and they are often used in scripts that access files. Because they're used so
much, let's look at each of these individually.

Checking Directories

The -d test checks if a specified filename exists as a directory on the system. This is
usually a good thing to do if you're trying to write a file to a directory, or before you try
to change to a directory location:
$ cat testll
#!/bin/bash
look before you leap
if [-d $HOME]
then
echo “Your HOME directory exists”
cd $HOME

1s -a
else

echo “There is a problem with your HOME directory”

fi
$
$./testll
“Your HOME directory exists”

Documents .gvTfs .pulse-cookie
. Downloads .ICEauthority .recently-used.xbel
.aptitude .esd auth .local
.sudo_as_admin_ successful
.bash_history examples .desktop .mozilla Templates
.bash_logout .fontconfig Music testll
.bashrc .gconf .nautilus Videos
.cache .gconfd .openoffice.org

.Xsession-errors

282

The Linux Command Line & Shell Scripting Bible 2™ Edition

.config .gksu.lock Pictures
.xsession-errors.old

.dbus .gnome2 .profile
Desktop .gnome2 private Public
.dmrc .gtk-bookmarks .pulse

$

The sample code uses the -d test condition to see if the $HOME directory exists for
the wuser. If it does, it proceeds to use thecdcommand to change to
the $HOME directory and performs a directory listing.

Checking If an Object Exists

The -e comparison allows you to check if a file or directory object exists before you
attempt to use it in your script:

$ cat testl2

#!/bin/bash

checking if a directory exists

if [-e $HOME 1]

then

echo “0OK on the directory, now to check the file”
checking if a file exists
if [-e $HOME/testing]
then
the file exists, append data to it
echo “Appending date to existing file”
date >> $HOME/testing
else
the file does not exist, create a new file
echo “Creating new file”
date > $HOME/testing
fi
else

echo “Sorry, you do not have a HOME directory”
fi
$
$./testl2
0K on the directory, now to check the file
Creating new file
$./testl2
0K on the directory, now to check the file

283

The Linux Command Line & Shell Scripting Bible 2™ Edition

Appending date to existing file

$

The first check uses the -ecomparison to determine if the wuser has
a $HOME directory. If so, the next -ecomparison checks to determine if the testing file
exists in the $HOME directory. If the file doesn't exist, the shell script uses the single
greater-than redirect symbol, creating a new file with the output from
the datecommand. The second time you run the shell script, it uses the double greater-
than symbol, so it just appends the date output to the existing file.

Checking for a File

The -e comparison works for both files and directories. To be sure that the object
specified is a file, you must use the - f comparison:

$ cat testl3

#!/bin/bash

check if a file

if [-e $HOME]

then

echo “The object exists, is it a file?”
if [-f $HOME]
then
echo “Yes, it is a file!”
else
echo “No, it is not a file!”
if [-f $HOME/.bash history 1
then
echo “But this is a file!”
fi
fi
else

echo “Sorry, the object does not exist”

fi

$

$./testl3

The object exists, is it a file?

No, it is not a file!

But this is a file!

$

This little script does a whole lot of checking! First, it uses the -e comparison to test
if $HOME exists. If it does, it uses - T to test if it's a file. If it isn't a file (which of course it
isn't), we use the - f comparison to test if it's a file, which it is.

284

The Linux Command Line & Shell Scripting Bible 2™ Edition

Can You Read It?

Before trying to read data from a file, it's usually a good idea to test if you can read from
the file first. You do this with the - r comparison:

$ cat testld

#!/bin/bash

testing if you can read a file

pwfile=/etc/shadow

first, test if the file exists, and is a file
if [-f $pwfile]
then
now test if you can read it
if [-r $pwfile]
then
tail $pwfile
else
echo “Sorry, I am unable to read the $pwfile file”
fi
else
echo “Sorry, the file $file does not exist”
fi
$
$./testld
Sorry, I am unable to read the /etc/shadow file

$

The /etc/shadow file contains the encrypted passwords for system users, so it's not
readable by normal users on the system. The -r comparison determined that | didn't
have read access to the file, so the test command failed and the bash shell executed the
else section of the if-then statement.

Checking for Empty Files

You should use -s comparison to check if a file is empty, especially if you're trying to
remove a file. Be careful because when the -s comparison succeeds, it indicates that a
file has data in it:

$ cat testl5

#!/bin/bash

testing if a file is empty

file=t1l5test

touch $file

285

The Linux Command Line & Shell Scripting Bible 2™ Edition

if [-s $file]
then

echo “The $file file exists and has data in it”
else

echo “The $file exists and is empty”
fi
date > $file
if [-s $file]
then

echo “The $file file has data in it”
else

echo “The $file is still empty”

fi

$

$./testl5

The tl5test exists and is empty

The tl5test file has data in it

$

The touch command creates the file but doesn't put any data in it. After we use
the date command and redirect the output to the file, the -s comparison indicates that
there's data in the file.

Checking If You Can Write to a File

The -w comparison determines if you have permission to write to a file:
$ cat testl6
#!/bin/bash
checking if a file is writeable

logfile=$HOME/t16test
touch $logfile

chmod u-w $logfile
now=‘date +%Y%m%d -%H%M’

if [-w $logfile]
then

echo “The program ran at: $now” > $logfile

echo “The first attempt succeeded”
else

echo “The first attempt failed”
fi

286

The Linux Command Line & Shell Scripting Bible 2™ Edition

chmod u+w $logfile
if [-w $logfile]
then

echo “The program ran at: $now” > $logfile

echo “The second attempt succeeded”
else

echo “The second attempt failed”

fi

$

$./testl6

The first attempt failed

The second attempt succeeded

$ cat $HOME/tl6test

The program ran at: 20110124-1602

$

This is a pretty busy shell script! First, it defines a log file in your $HOME directory,
stores the filename of it in the variable logfile, creates the file, and then removes the
write permission for the wuser, using the chmodcommand. Next, it creates the
variable now and stores a timestamp, using the date command. After all of that, it
checks if you have write permission to the new log file (which you just took away).
Because you don't have write permission, you should see the failed message appear.

After that, the script uses the chmod command again to grant the write permission
back for the user, and tries to write to the file again. This time the write is successful.

Checking If You Can Run a File

The -x comparison is a handy way to determine if you have execute permission for a
specific file. While this may not be needed for most commands, if you run a lot of scripts
from your shell scripts, it could come in handy:

$ cat testl?

#!/bin/bash

testing file execution

if [-x testl6]

then

n

echo “You can run the script:

./testl6
else

echo “Sorry, you are unable to execute the script”
fi
$
$./testl?
You can run the script:
The first attempt failed

287

The Linux Command Line & Shell Scripting Bible 2™ Edition

The second attempt succeeded

$

$ chmod u-x testl6

$

$./testl?7

Sorry, you are unable to execute the script
$

This example shell script uses the -x comparison to test if you have permission to
execute the test16 script. If so, it runs the script (notice that even in a shell script, you
must have the proper path to execute a script that's not located in your $PATH). After
successfully running the test16 script the first time, change the permissions on it and
try again. This time, the -x comparison fails, as you don't have execute permission for
thetest16 script.

Checking Ownership

The -0 comparison allows you to easily test if you're the owner of a file:
$ cat testl8
#!/bin/bash
check file ownership

if [-0 /etc/passwd]
then

echo “You are the owner of the /etc/passwd file”
else

echo “Sorry, you are not the owner of the /etc/passwd file”

fi

$

$./testl8

Sorry, you are not the owner of the /etc/passwd file

$

$ su

Password:

$

./testl8

You are the owner of the /etc/passwd file

#

The script uses the -0 comparison to test if the user running the script is the owner of
the /etc/passwd file. The first time the script is run under a normal user account, so
the test fails. The second time, we used the sucommand to become the root user, and
the test succeeded.

Checking Default Group Membership

288

The Linux Command Line & Shell Scripting Bible 2™ Edition

The -G comparison checks the default group of a file, and it succeeds if it matches the
group of the default group for the user. This can be somewhat confusing because the -
G comparison checks the default groups only and not all the groups the user belongs to.
Here's an example of this:

$ cat testl9

#!/bin/bash# check file group test

if [-G $HOME/testing 1
then

echo “You are in the same group as the file”
else

echo “The file is not owned by your group”
fi
$
$ ls -1 $HOME/testing
-rw-rw-r-- 1 rich rich 58 2011-01-30 15:51 /home/rich/testing
$

$./testl9

You are in the same group as the file
$

$ chgrp sharing $HOME/testing

$

$./testl9

The file is not owned by your group

$

The first time the script is run, the $HOME/ testing file is in the rich group, and the -
G comparison succeeds. Next, the group is changed to the sharing group, which the
user is also a member of. However, the -G comparison failed, since it only compares the
default groups, not any additional group memberships.

Checking File Date

The last set of comparisons deal with comparing the creation times of two files. This
comes in handy when writing scripts to install software. Sometimes you don't want to
install a file that is older than a file already installed on the system.

The -nt comparison determines if a file is newer than another file. If a file is newer, it
will have a more recent file creation time. The -ot comparison determines if a file is
older than another file. If the file is older, it will have an older file creation time:

$ cat test20

#!/bin/bash

testing file dates

if [./testl9 -nt ./testl8]
then

289

The Linux Command Line & Shell Scripting Bible 2™ Edition

echo “The testl9 file is newer than test18”
else

echo “The testl8 file is newer than test19”

fi
if [./testl7 -ot ./testl9]
then
echo “The testl7 file is older than the testl9 file”
fi
$
$./test20

The testl9 file is newer than testl8

The testl7 file is older than the testl9 file

$

$ s -1 testl7 testl8 testl9

-rwxrw-r-- 1 rich rich 167 2011-01-30 16:31 testl7

-rwxrw-r-- 1 rich rich 185 2011-01-30 17:46 testl8

-rwxrw-r-- 1 rich rich 167 2011-01-30 17:50 testl19

$

The filepaths used in the comparisons are relative to the directory from where you run
the script. This can cause problems if the files you're checking can be moved around.

Another problem is that neither of these comparisons check if the file exists first. Try this
test:

$ cat test2l
#!/bin/bash
testing file dates

if [./badfilel -nt ./badfile2]
then

echo “The badfilel file is newer than badfile2”
else

echo “The badfile2 file is newer than badfilel”

fi

$

$./test2l

The badfile2 file is newer than badfilel

$

This little example demonstrates that if the files don't exist, the -nt comparison just
returns a failed condition. It's imperative that you ensure the files exist before trying to
use them in the -nt or -ot comparison.

Compound Condition Testing

290

The Linux Command Line & Shell Scripting Bible 2™ Edition

The if-then statement allows you to use Boolean logic to combine tests. There are
two Boolean operators you can use:

* [conditionl] && [condition2]
« [conditionl] || [condition2]
The first Boolean operation uses the AND Boolean operator to combine two conditions.
Both conditions must be met for the then section to execute.

The second Boolean operation uses the OR Boolean operator to combine two
conditions. If either condition evaluates to a true condition, the then section is
executed.

$ cat test22
#!/bin/bash
testing compound comparisons

if [-d $HOME 1 && [-w $HOME/testing 1]
then

echo “The file exists and you can write to it”
else

echo “I cannot write to the file”
fi
$
$./test22
I cannot write to the file
$ touch $HOME/testing

$

$./test22

The file exists and you can write to it
$

Using the AND Boolean operator, both of the comparisons must be met. The first
comparison checks to see if the$HOME directory exists for the user. The second
comparison checks to see if there's a file called testing in the user's $HOME directory,
and if the user has write permissions for the file. If either of these comparisons fails,
the if statement fails and the shell executes the else section. If both of the
comparisons succeed, the ifstatement succeeds and the shell executes
the then section.

Advanced if-then Features

There are two relatively recent additions to the bash shell that provide advanced
features that you can use in if-then statements:

* Double parentheses for mathematical expressions
» Double square brackets for advanced string handling functions
The following sections describe each of these features in more detail.

291

The Linux Command Line & Shell Scripting Bible 2™ Edition

Using Double Parentheses

The double parentheses command allows you to incorporate advanced mathematical
formulas in your comparisons. Thetest command only allows for simple arithmetic
operations in the comparison. The double parentheses command provides more
mathematical symbols, which programmers, who have used other programming
languages, may be used to using. The format of the double parentheses command is:

((expression))

The expression term can be any mathematical assignment or comparison expression.
Besides the standard mathematical operators that the test command uses, Table
11.4 shows the list of additional operators available for use in the double parentheses
command.

Table 11.4 The Double Parentheses Command Symbols

‘Symbol ‘ ‘Description ‘

\va1++ ‘ ‘Post-increment

Post-decrement

Nal—-

‘++va 1 ‘ ‘Pre-increment

--val HPre-decrement

‘ ! ‘ ‘Lo gical negation

Bitwise negation

‘ ~

‘<< HLeft bitwise shift
‘>> HRight bitwise shift
‘& HBitwise Boolean AND

“ HBitWise Boolean OR
‘&& HLO gical AND
|| Logical OR |

‘* * ‘ ‘Exponenti ation ‘

You can use the double parentheses command in an if statement, as well as a
normal command in the script for assigning values:

$ cat test23

#!/bin/bash

using double parenthesis

vall=10

if (($vall ** 2 > 90))
then

((val2 = $vall ** 2))

echo “The square of $vall is $val2”
fi

292

The Linux Command Line & Shell Scripting Bible 2™ Edition

$

$./test23

The square of 10 is 100
$

Notice that you don't need to escape the greater-than symbol in the expression within
the double parentheses. This is yet another advanced feature provided by the double
parentheses command.

Using Double Brackets

The double bracket command provides advanced features for string comparisons. The
double bracket command format is:

[[expression 1]

The double bracketed expression uses the standard string comparison used in
the test command. However, it provides an additional feature that the test command
doesn't, pattern matching.

In pattern matching, you can define a regular expression (discussed in detail in
Chapter 19) that's matched against the string value:

$ cat test24

#!/bin/bash

using pattern matching

if [[$USER == r*]]
then

echo “Hello $USER”
else

echo “Sorry, I do not know you”

fi

$

$./test24

Hello rich

$

The double bracket command matches the $USER environment variable to see if it
starts with the letter r. If so, the comparison succeeds, and the shell executes
the then section commands.

The case Command

Often you'll find yourself trying to evaluate the value of a variable, looking for a specific
value within a set of possible values. In this scenario, you end up having to write a
lengthy if-then-else statement, like this:

$ cat test25

#!/bin/bash

293

The Linux Command Line & Shell Scripting Bible 2™ Edition

looking for a possible value

if [$USER = “rich”]
then

echo “Welcome $USER”

echo “Please enjoy your visit”

elif [$USER = barbara 1
then

echo “Welcome $USER”

echo “Please enjoy your visit”
elif [$USER = testing]
then

echo “Special testing account”
elif [$USER = jessica]
then

echo “Do not forget to logout when you're done”
else

echo “Sorry, you are not allowed here”

fi

$

$./test25

Welcome rich

Please enjoy your visit

$

The elif statements continue the if-then checking, looking for a specific value for
the single comparison variable.

Instead of having to write all of the elif statements to continue checking the same
variable value, you can use the case command. The case command checks multiple
values of a single variable in a list-oriented format:

case variable in

patternl | pattern2) commandsl;;

pattern3) commands2;;

*) default commands;;

esac

The case command compares the variable specified against the different patterns. If
the variable matches the pattern, the shell executes the commands specified for the
pattern. You can list more than one pattern on a line, using the bar operator to separate
each pattern. The asterisk symbol is the catch-all for values that don't match any of the
listed patterns. Here's an example of converting the if-then-else program to using
the case command:

$ cat test26

#!/bin/bash

294

The Linux Command Line & Shell Scripting Bible 2™ Edition

using the case command

case $USER in
rich | barbara)

echo “Welcome, $USER”

echo “Please enjoy your visit”;;
testing)

echo “Special testing account”;;
jessica)

echo “Do not forget to log off when you're done”;;
*)
echo “Sorry, you are not allowed here”;;
esac
$
$./test26
Welcome, rich
Please enjoy your visit
$

The case command provides a much cleaner way of specifying the various options for
each possible variable value.

Summary

Structured commands allow you to alter the normal flow of execution on the shell script.
The most basic structured command is the if-then statement. This statement allows
you to evaluate a command, and perform other commands based on the outcome of the
command you evaluated.

You can expand the if-then statement to include a set of commands the bash shell
executes if the specified command fails as well. The if-then-else statement allows
you to execute commands only if the command being evaluated returns a non-zero exit
status code.

You can also link if-then-else statements together, using the elif statement.
The elif is equivalent to using anelse if statement, providing for additional
checking if the original command that was evaluated failed.

In most scripts, instead of evaluating a command, you'll want to evaluate a condition,
such as a numeric value, the contents of a string, or the status of a file or directory.
The test command provides an easy way for you to evaluate all of these conditions. If
the condition evaluates to a true condition, the test command produces a zero exit
status code for the if-then statement. If the condition evaluates to a false condition,
the test command produces a non-zero exit status code for the if-then statement.

295

The Linux Command Line & Shell Scripting Bible 2™ Edition

The square bracket is a special bash command that is a synonym for
the test command. You can enclose a test condition in square brackets in the if-
then statement to test for numeric, string, and file conditions.

The double parentheses command allows you to perform advanced mathematical
evaluations using additional operators, and the double square bracket command allows
you to perform advanced string pattern-matching evaluations.

Finally, the chapter discussed the case command, which is a shorthand way of
performing multiple if-then-elsecommands, checking the value of a single variable
against a list of values.

The next chapter continues the discussion of structured commands by examining the
shell looping commands. The forand while commands allow you to create loops that
iterate through commands for a given period of time.

296

The Linux Command Line & Shell Scripting Bible 2™ Edition

Chapter 12

More Structured Commands

In This Chapter

* Looping with the for statement

* Iterating with the until statement
» Using the while statement

» Combining loops

» Redirecting loop output

In the previous chapter, you saw how to manipulate the flow of a shell script program by
checking the output of commands and the values of variables. In this chapter, we'll
continue to look at structured commands that control the flow of your shell scripts. You'll
see how you can perform repeating processes, commands that can loop through a set of
commands until an indicated condition has been met. This chapter discusses and
demonstrates the for,while, and until bash shell looping commands.

The for Command

Iterating through a series of commands is a common programming practice. Often you
need to repeat a set of commands until a specific condition has been met, such as
processing all of the files in a directory, all of the users on a system, or all of the lines in
a text file.

The bash shell provides the for command to allow you to create a loop that iterates
through a series of values. Each iteration performs a defined set of commands using one
of the values in the series. The following is the basic format of the bash
shell for command:

for var in list
do
commands

done

You supply the series of values used in the iterations in the list parameter. There are
several different ways that you can specify the values in the list.

In each iteration, the variable var contains the current value in the list. The first
iteration uses the first item in the list, the second iteration the second item, and so on
until all of the items in the list have been used.

297

The Linux Command Line & Shell Scripting Bible 2™ Edition

The commands entered between the do and done statements can be one or more
standard bash shell commands. Within the commands, the $var variable contains the
current list item value for the iteration.

Note

If you prefer, you can include the do statement on the same line as the for statement, but
you must separate it from the list items using a semicolon: for var in list; do.

We mentioned that there are several different ways to specify the values in the list.
The following sections show the various ways to do that.

Reading Values in a List

The most basic use of the for command is to iterate through a list of values defined
within the for command itself:

$ cat testl
#!/bin/bash

basic for command

for test in Alabama Alaska Arizona Arkansas California Colorado
do
echo The next state is $test
done
$./testl
The next state is Alabama
The next state is Alaska
The next state is Arizona
The next state is Arkansas
The next state is California

The next state is Colorado

$

Each time the for command iterates through the list of values provided, it assigns
the $test variable the next value in the list. The $test variable can be used just like
any other script variable within the for command statements. After the last iteration,
the $test variable remains valid throughout the remainder of the shell script. It retains
the last iteration value (unless you change its value):

$ cat testlb
#!/bin/bash

testing the for variable after the looping

298

The Linux Command Line & Shell Scripting Bible 2™ Edition

for test in Alabama Alaska Arizona Arkansas California Colorado

do

echo “The next state is $test”

done

echo “The last state we visited was $test”

test=Connecticut

echo “Wait, now we're visiting $test”

$./testlb

The
The
The
The
The
The
The

next
next
next
next
next
next

last

state
state
state
state
state
state

state

is
is
is
is
is
is

we

Alabama
Alaska
Arizona
Arkansas
California
Colorado

visited was Colorado

Wait, now we're visiting Connecticut

$

The $test variable retained its value and also allowed us to change the value and
use it outside of the forcommand loop, as any other variable would.

Reading Complex Values in a List

Things aren't always as easy as they seem with the for loop. There are times when you
run into data that causes problems. Here's a classic example of what can cause
problems for shell script programmers:

$ cat badtestl

#!/bin/bash

another example of how not to use the for command

for test in I don't know if this'll work

do

echo “word:$test”

done

$./badtestl

299

The Linux Command Line & Shell Scripting Bible 2™ Edition

word:I
word:dont know if thisll
word:work

$

Ouch, that hurts. The shell saw the single quotation marks within the list values and
attempted to use them to define a single data value, and it really messed things up in
the process.

There are two ways to solve this problem:
» Use the escape character (the backslash) to escape the single quotation mark.

» Use double quotation marks to define the values that use single quotation marks.
Neither solution is all that fantastic, but each one does help solve the problem:

$ cat test2
#!/bin/bash

another example of how not to use the for command

for test in I don\'t know if “this'll” work
do

echo “word:$test”
done
$./test2
word:I
word:don't
word: know
word:if
word:this'1ll
word:work

$

In the first problem value, you added the backslash character to escape the single
quotation mark in the don'tvalue. In the second problem value, you enclosed
the this' 11 value in double quotation marks. Both methods worked fine to distinguish
the value.

Yet another problem you may run into is multi-word values. Remember that
the for loop assumes that each value is separated with a space. If you have data
values that contain spaces, you'll run into yet another problem:

$ cat badtest2
#!/bin/bash

300

The Linux Command Line & Shell Scripting Bible 2™ Edition

another example of how not to use the for command

for test in Nevada New Hampshire New Mexico New York North Carolina
do
echo “Now going to $test”
done
$./badtestl
Now going to Nevada
Now going to New
Now going to Hampshire
Now going to New
Now going to Mexico
Now going to New
Now going to York
Now going to North
Now going to Carolina

$

Oops, that's not exactly what we wanted. The for command separates each value in
the list with a space. If there are spaces in the individual data values, you must
accommodate them using double quotation marks:

$ cat test3
#!/bin/bash

an example of how to properly define values

for test in Nevada “New Hampshire” “New Mexico” “New York”
do
echo “Now going to $test”
done
$./test3
Now going to Nevada
Now going to New Hampshire
Now going to New Mexico

Now going to New York

301

The Linux Command Line & Shell Scripting Bible 2™ Edition

$

Now the for command can properly distinguish between the different values. Also,
notice that when you use double quotation marks around a value, the shell doesn't
include the quotation marks as part of the value.

Reading a List from a Variable

Often what happens in a shell script is that you accumulate a list of values stored in a
variable and then need to iterate through the list. You can do this using
the for command as well:

$ cat test4
#!/bin/bash
using a variable to hold the list

list="“Alabama Alaska Arizona Arkansas Colorado”

list=$1list“ Connecticut”

for state in $list
do

echo “Have you ever visited $state?”
done
$./testd
Have you ever visited Alabama?
Have you ever visited Alaska?
Have you ever visited Arizona?
Have you ever visited Arkansas?
Have you ever visited Colorado?
Have you ever visited Connecticut?

$

The $1ist variable contains the standard text list of values to use for the iterations.
Notice that the code also uses another assignment statement to add (or concatenate)
an item to the existing list contained in the $listvariable. This is a common method for
adding text to the end of an existing text string stored in a variable.

Reading Values from a Command

302

The Linux Command Line & Shell Scripting Bible 2™ Edition

Yet another way to generate values for use in the list is to use the output of a command.
You use the backtick characters to execute any command that produces output, and

then use the output of the command in the for command:

$ cat testh
#!/bin/bash

reading values from a file

file="

states”

for state in ‘cat $file’

do

echo “Visit beautiful $state”

done

$ cat

states

Alabama

Alaska

Arizona

Arkansas

Colorado

Connecticut

Delawa

re

Florida

Georgia

$./te
Visit
Visit
Visit
Visit
Visit
Visit
Visit
Visit

Visit

st5

beautiful
beautiful
beautiful
beautiful
beautiful
beautiful
beautiful
beautiful
beautiful

Alabama
Alaska
Arizona
Arkansas
Colorado
Connecticut
Delaware
Florida

Georgia

303

The Linux Command Line & Shell Scripting Bible 2™ Edition

$

This example uses the cat command in tick marks to display the contents of the file
states. You'll notice that the states file includes each state on a separate line, not
separated by spaces. The for command still iterates through the output of
the cat command one line at a time, assuming that each state is on a separate line.
However, this doesn't solve the problem of having spaces in data. If you list a state with
a space in it, the for command will still take each word as a separate value. There's a
reason for this, which we look at in the next section.

Note

The test5 code example assigned the filename to the variable using just the filename
without a path. This requires that the file be in the same directory as the script. If this isn't
the case, you'll need to use a full pathname (either absolute or relative) to reference the file
location.

Changing the Field Separator

The cause of this problem is the special environment variable IFS, called the internal
field separator. The IFS environment variable defines a list of characters the bash shell
uses as field separators. By default, the bash shell considers the following characters as
field separators:

* A space
« Atab
* A newline

If the bash shell sees any of these characters in the data, it will assume that you're
starting a new data field in the list. When working with data that can contain spaces
(such as filenames), this can be annoying, as you saw in the previous script example.

To solve this problem, you can temporarily change the IFS environment variable
values in your shell script to restrict the characters the bash shell recognizes as field
separators. However, there is somewhat of an odd way of doing this. For example, if you
want to change the IFS value to recognize only the newline character, you need to do
this:

IFS=$‘\n’

Adding this statement to your script tells the bash shell to ignore spaces and tabs in
data values. Applying this to the previous script yields the following:

$ cat test5b
#!/bin/bash

reading values from a file
file=“states”

IFS=$‘\n’

304

The Linux Command Line & Shell Scripting Bible 2™ Edition

for state in ‘cat $file’

do

echo “Visit beautiful $state”

done

$./testhb

Visit
Visit
Visit
Visit
Visit
Visit
Visit
Visit
Visit
Visit
Visit
Visit

$

Now the shell script is able to use values in the list that contain spaces.

Caution

beautiful
beautiful
beautiful
beautiful
beautiful
beautiful
beautiful
beautiful
beautiful
beautiful
beautiful
beautiful

Alabama
Alaska
Arizona
Arkansas
Colorado
Connecticut
Delaware
Florida
Georgia

New York
New Hampshire

North Carolina

When working on long scripts, it's possible to change the IFS value in one place, and then forget
about it and assume the default value elsewhere in the script. A safe practice to get into is to save

the original IFS value before changing it and then restore it when you're done.

This technique can be coded like this

IFS.OLD=$IFS
IFS=$‘\n’

<use the new IFS value in code>

IFS=$IFS.OLD

This ensures that the IFS value is returned to the default value for future operations within the
script.

There are other excellent applications of the IFS environment variable. Say that you
want to iterate through values in a file that are separated by a colon (such as in

the /etc/passwd file). All you need to do is set the IFS value to a colon:

IFS=:

305

The Linux Command Line & Shell Scripting Bible 2™ Edition

If you want to specify more than one IFS character, just string them together on the
assignment line:

IFS=$‘\n’:;"
This assignment uses the newline, colon, semicolon, and double quotation mark

characters as field separators. There's no limit to how you can parse your data using the
IFS characters.

Reading a Directory Using Wildcards

Finally, you can use the for command to automatically iterate through a directory of
files. To do this, you must use a wildcard character in the file or pathname. This forces
the shell to use file globbing. File globbing is the process of producing file or path names
that match a specified wildcard character.

This feature is great for processing files in a directory when you don't know all of the
filenames:

$ cat testb
#!/bin/bash

iterate through all the files in a directory

for file in /home/rich/test/*
do

if [-d “$file”]
then

echo “$file is a directory”

elif [-f “$file”]

then

echo “$file is a file”

fi
done
$./test6
/home/rich/test/dirl is a directory
/home/rich/test/myprog.c is a file
/home/rich/test/myprog is a file
/home/rich/test/myscript is a file

/home/rich/test/newdir is a directory

306

The Linux Command Line & Shell Scripting Bible 2™ Edition

/home/rich/test/newfile is a file
/home/rich/test/newfile2 is a file
/home/rich/test/testdir is a directory
/home/rich/test/testing is a file
/home/rich/test/testprog is a file
/home/rich/test/testprog.c is a file

$

The for command iterates through the results of the /home/rich/test/* listing.
The code tests each entry using the test command (using the square bracket method)
to see if it's a directory, using the -d parameter, or a file, using the - f parameter (See
Chapter 11).

Notice in this example that we did something different in the if statement tests:
if [-d “$file”]
In Linux, it's perfectly legal to have directory and filenames that contain spaces. To

accommodate that, you should enclose the $file variable in double quotation marks. If
you don't, you'll get an error if you run into a directory or filename that contains spaces:

./test6: line 6: [: too many arguments

./test6: line 9: [: too many arguments

The bash shell interprets the additional words as arguments within
the test command, causing an error.

You can also combine both the directory search method and the list method in the
same for statement by listing a series of directory wildcards in the for command:

$ cat test7
#!/bin/bash

iterating through multiple directories

for file in /home/rich/.b* /home/rich/badtest
do
if [-d “$file”]
then
echo “$file is a directory”
elif [-f “$file”]
then
echo “$file is a file”
else

echo “$file doesn't exist”

307

The Linux Command Line & Shell Scripting Bible 2™ Edition

fi
done
$./test7
/home/rich/.backup.timestamp is a file
/home/rich/.bash_history is a file
/home/rich/.bash logout is a file
/home/rich/.bash profile is a file
/home/rich/.bashrc is a file
/home/rich/badtest doesn't exist

$

The for statement first uses file globbing to iterate through the list of files that result
from the wildcard character; then it iterates through the next file in the list. You can
combine any number of wildcard entries in the list to iterate through.

Caution

Notice that you can enter anything in the list data. Even if the file or directory doesn't exist
the for statement attempts to process whatever you place in the list. This can be a problem when
working with files and directories. You have no way of knowing if you're trying to iterate through a
nonexistent directory: It's always a good idea to test each file or directory before trying to process
it.

The C-Style for Command

If you've done any programming using the C programming language, you're probably
surprised by the way the bash shell uses the for command. In the C language,
a for loop normally defines a variable, which it then alters automatically during each
iteration. Typically, programmers use this variable as a counter and either increment or
decrement the counter by one in each iteration. The bash for command can also
provide this functionality. This section shows you how you can use a C-
style for command in a bash shell script.

The C Language for Command

The C language for command has a specific method for specifying a variable, a
condition that must remain true for the iterations to continue, and a method for altering
the variable for each iteration. When the specified condition becomes false,
the for loop stops. The condition equation is defined using standard mathematical
symbols. For example, consider the following C language code:

for (1 =0; i < 10; i++)

{

308

The Linux Command Line & Shell Scripting Bible 2™ Edition

printf(“The next number is %d\n”, 1i);

}

This code produces a simple iteration loop, where the variable i is used as a counter.
The first section assigns a default value to the variable. The middle section defines the
condition under which the loop will iterate. When the defined condition becomes false,
the for loop stops iterations. The last section defines the iteration process. After each
iteration, the expression defined in the last section is executed. In this example,
the i variable is incremented by one after each iteration.

The bash shell also supports a version of the for loop that looks similar to the C-
style for loop, although it does have some subtle differences, including a couple of
things that will confuse shell script programmers. Here's the basic format of the C-style
bash for loop:

for ((

variable

assignment ;

condition ;

iteration

process))

The format of the C-style forloop can be confusing for bash shell script
programmers, as it uses C-style variable references instead of the shell-style variable
references. Here's what a C-style for command looks like:

for ((a=1; a < 10; a++))

Notice that there are a couple of things that don't follow the standard bash
shell for method:

» The assignment of the variable value can contain spaces.
» The variable in the condition isn't preceded with a dollar sign.
* The equation for the iteration process doesn't use the expr command format.

The shell developers created this format to more closely resemble the C-
style for command. While this is great for C programmers, it can throw even expert
shell programmers into a tizzy. Be careful when using the C-style forloop in your
scripts.

Here's an example of using the C-style for command in a bash shell program:
$ cat test8

#!/bin/bash

testing the C-style for loop

for ((i=1; 1 <= 10; i++))
do
echo “The next number is $i”

done

309

$./test8

The Linux Command Line & Shell Scripting Bible 2™ Edition

The next number

The
The
The
The
The
The
The
The
The

$

next
next
next
next
next
next
next
next

next

number
number
number
number
number
number
number
number

number

is
is
is
is
is
is
is
is
is

is

© 00 N o uu A~ W N =

=
(<]

The for loop iterates through the commands using the variable defined in the for
loop (the letter iin this example). In each iteration, the $i variable contains the value
assigned in the for loop. After each iteration, the loop iteration process is applied to the
variable, which in this example, increments the variable by one.

Using Multiple Variables

The C-style for command also allows you to use multiple variables for the iteration. The
loop handles each variable separately, allowing you to define a different iteration
process for each variable. While you can have multiple variables, you can only define
one condition in the for loop:

$ cat test9
#!/bin/bash

multiple variables

for ((a=1,

do

echo “$a -

done

$./test9

£~ w N =
1

310

$b”

b=10; a <= 10; a++, b--))

The Linux Command Line & Shell Scripting Bible 2™ Edition

5 -6
6 -5
7 -4
8 - 3
9 -2
10 - 1
$

The a and b variables are each initialized with different values and different iteration
processes are defined. While the loop increases the a variable, it decreases
the b variable for each iteration.

The while Command

The while command is somewhat of a cross between the if-then statement and
the for loop. The while command allows you to define a command to test and then
loop through a set of commands for as long as the defined test command returns a zero
exit status. It tests the test command at the start of each iteration. When
the test command returns a non-zero exit status, the while command stops executing
the set of commands.

Basic while Format
The format of the while command is:

while
test
command

do

other
commands

done

The test command defined in the while command is the exact same format as
in 1f-then statements (see Chapter 11). As in the if-then statement, you can use
any normal bash shell command, or you can use the test command to test for
conditions, such as variable values.

The key to thewhilecommand is that the exit status of the test
command specified must change, based on the commands run during the loop. If the
exit status never changes, the while loop will get stuck in an infinite loop.

The most common use of the test command is to use brackets to check a value of a
shell variable that's used in the loop commands:

311

The Linux Command Line & Shell Scripting Bible 2™ Edition

$ cat testl0
#!/bin/bash

while command test

varl=10
while [$varl -gt 0]
do

echo $varl

varl=$[$varl - 1]
done
$./testlo
10

“©r R N Wb U1 OO NN 00

The while command defines the test condition to check for each iteration:
while [$varl -gt 0]

As long as the test condition is true, the while command continues to loop through
the commands defined. Within the commands, the variable used in the test condition
must be modified, or else you'll have an infinite loop. In this example, we use shell
arithmetic to decrease the variable value by one:

varl=$[$varl - 1]
The while loop stops when the test condition is no longer true.

Using Multiple Test Commands

312

The Linux Command Line & Shell Scripting Bible 2™ Edition

In somewhat of an odd situation, the while command allows you to define multiple test
commands on the while statement line. Only the exit status of the last test command is
used to determine when the loop stops. This can cause some interesting results if you're

not careful. Here's an example of what we mean:

$ cat testll

#!/bin/bash

testing a multicommand while loop

varl=

10

while echo $varl

[$varl -ge 0]

do

echo “This is inside the loop”

varl=$[$varl - 1]

done

$./testll

10
This

This

This

This

This

This

This

This

is

is

is

is

is

is

is

is

inside

inside

inside

inside

inside

inside

inside

inside

the

the

the

the

the

the

the

the

loop

loop

loop

loop

loop

loop

loop

loop

313

The Linux Command Line & Shell Scripting Bible 2™ Edition

This is inside the loop
1
This is inside the loop
0
This is inside the loop
-1

$

Pay close attention to what happened in this example. There were two test commands
defined in the whilestatement:

while echo $varl

[$varl -ge 0]

The first test simply displays the current value of the varl variable. The second test
uses brackets to determine the value of the varl variable. Inside the loop,
an echo statement displays a simple message, indicating that the loop was processed.
Notice when you run the example how the output ends:

This is inside the loop
-1
$

The while loop executed the echo statement when the varl variable was equal to
zero, and then decreased the varlvariable value. Next, the test commands were
executed for the next iteration. The echo test command was executed, displaying the
value of the varl variable, which is now less than zero. It's not until the shell executes
the testtest command that the while loop terminates.

This demonstrates that in a multi-command while statement, all of the test
commands are executed in each iteration, including the last iteration when the last test
command fails. Be careful of this. Another thing to be careful of is how you specify the
multiple test commands. Note that each test command is on a separate line!

The until Command

The until command works in exactly the opposite way from the while command.
The until command requires that you specify a test command that normally produces
a non-zero exit status. As long as the exit status of the test command is non-zero, the
bash shell executes the commands listed in the loop. Once the test command returns a
zero exit status, the loop stops.

As you would expect, the format of the until command is:

until test
commands

314

The Linux Command Line & Shell Scripting Bible 2™ Edition

do

other commands
done

Similar to the while command, you can have more than one test command in
the until command statement. Only the exit status of the last command determines if
the bash shell executes the other commands defined.

The following is an example of using the until command:
$ cat testl2
#!/bin/bash

using the until command

varl=100

until [$varl -eq 0]
do
echo $varl
varl=$[$varl - 25]
done
$./testl2
100
75
50
25

$

This example tests the varl variable to determine when the until loop should stop.
As soon as the value of the variable is equal to zero, the until command stops the
loop. The same caution as for the while command applies when you use multiple test
commands with the until command:

$ cat testl3
#!/bin/bash

using the until command

varl=100

315

The Linux Command Line & Shell Scripting Bible 2™ Edition

until echo $varl
[$varl -eq 0]

do

echo Inside the loop: $varl

varl=$[$varl - 25]
done
$./testl3
100
Inside the loop: 100
75
Inside the loop: 75
50
Inside the loop: 50
25
Inside the loop: 25
0

$

The shell executes the test commands specified and stops only when the last
command is true.

Nesting Loops

A loop statement can use any other type of command within the loop, including other
loop commands. This is called anested loop. Care should be taken when using nested
loops, as you're performing an iteration within an iteration, which multiplies the number
of times commands are being run. Not paying close attention to this can cause problems
in your scripts.

Here's a simple example of nesting a for loop inside another for loop:
$ cat testl4d
#!/bin/bash

nesting for loops

for ((a=1; a <= 3; a++))
do

echo “Starting loop $a:”

316

The Linux Command Line & Shell Scripting Bible 2™ Edition

for ((b =1; b <= 3; b++))
do
echo “ Inside loop: $b”
done
done
$./testl4d
Starting loop 1:
Inside loop: 1
Inside loop: 2
Inside loop: 3
Starting loop 2:
Inside loop: 1
Inside loop: 2
Inside loop: 3
Starting loop 3:
Inside loop: 1
Inside loop: 2
Inside loop: 3

$

The nested loop (also called the inner loop) iterates through its values for each
iteration of the outer loop. Notice that there's no difference between
the do and done commands for the two loops. The bash shell knows when the
first done command is executed that it refers to the inner loop and not the outer loop.

The same applies when you mix loop commands, such as placing a for loop inside
awhile loop:

$ cat testl5
#!/bin/bash

placing a for loop inside a while loop
varl=5
while [$varl -ge 0]

do

echo “Outer loop: $varl”

317

The Linux Command Line & Shell Scripting Bible 2™ Edition

for ((var2 = 1; $var2 < 3; var2++))
do
var3=$[$varl * $var2]
echo “ Inner loop: $varl * $var2 = $var3”
done
varl=$[$varl - 1]
done
$./testl5
OQuter loop: 5
Inner loop: 5 *1 =5
Inner loop: 5 * 2 =10
Outer loop: 4
Inner loop: 4 * 1 =4
Inner loop: 4 * 2 = 8
OQuter loop: 3
Inner loop: 3 * 1 =3
Inner loop: 3 * 2 =6
Outer loop: 2
Inner loop: 2 * 1 =2
Inner loop: 2 * 2 =4
Outer loop: 1
Inner loop: 1 *1 =1
Inner loop: 1 * 2 =2
Outer loop: ©
Inner loop: 0 * 1 =0
Inner loop: 0 * 2 =0

$

Again, the shell was able to distinguish between the do and done commands of the
inner for loop from the same commands in the outer while loop.

If you really want to test your brain, you can even combine until and while loops:
$ cat testl6
#!/bin/bash

using until and while loops

318

The Linux Command Line & Shell Scripting Bible 2™ Edition

varl=3

until [$varl -eq 0]
do

echo “Outer loop: $varl”

var2=1

while [$var2 -1t 5]

do
var3=‘echo “scale=4; $varl / $var2” | bc’
echo “ Inner loop: $varl / $var2 = $var3”

var2=$[$var2 + 1]
done
varl=$[$varl - 1]
done
$./testlo6
Outer loop: 3

Inner loop: 3 / 1 = 3.0000
Inner loop: 3 / 2 = 1.5000
Inner loop: 3 / 3 = 1.0000
Inner loop: 3 / 4 = .7500
OQuter loop: 2
Inner loop: 2 / 1 = 2.0000
Inner loop: 2 / 2 = 1.0000
Inner loop: 2 / 3 = .6666
Inner loop: 2 / 4 = .5000
Outer loop: 1
Inner loop: 1 / 1 = 1.0000
Inner loop: 1 / 2 = .5000
Inner loop: 1 / 3 = .3333
Inner loop: 1 / 4 = .2500

319

The Linux Command Line & Shell Scripting Bible 2™ Edition

The outer until loop starts with a value of 3 and continues until the value equals 0.
The inner while loop starts with a value of 1 and continues as long as the value is less
than 5. Each loop must change the value used in the test condition, or the loop will get
stuck infinitely.

Looping on File Data
Often, you must iterate through items stored inside a file. This requires combining two of
the techniques covered:
» Using nested loops
» Changing the IFS environment variable

By changing the IFS environment variable, you can force the for command to
handle each line in the file as a separate item for processing, even if the data contains
spaces. Once you've extracted an individual line in the file, you may have to loop again
to extract data contained within it.

The classic example of this is processing data in the /etc/passwd file. This requires
that you iterate through the /etc/passwd file line by line and then change
the IFS variable value to a colon so that you can separate out the individual
components in each line.

The following is an example of doing just that:
#!/bin/bash
changing the IFS value

IFS.OLD=$IFS
IFS=$‘\n’
for entry in ‘cat /etc/passwd’
do
echo “Values in $entry -"
IFS=:
for value in $entry
do
echo “ $value”
done

done

$

This script uses two different IFS values to parse the data. The first IFS value parses
the individual lines in the /etc/passwd file. The inner for loop next changes

320

The Linux Command Line & Shell Scripting Bible 2™ Edition

the IFS value to the colon, which allows you to parse the individual values within
the /etc/passwd lines.

When you run this script, you'll get output something like this:
Values in rich:x:501:501:Rich Blum:/home/rich:/bin/bash -
rich
X
501
501
Rich Blum
/home/rich
/bin/bash
Values in katie:x:502:502:Katie Blum:/home/katie:/bin/bash -
katie
X
506
509
Katie Blum
/home/katie

/bin/bash

The inner loop parses each individual value in the /etc/passwd entry. This is also a
great way to process comma-separated data, a common way to import spreadsheet
data.

Controlling the Loop

You might be tempted to think that once you start a loop, you're stuck until the loop
finishes all of its iterations. This is not true. There are a couple of commands that help
us control what happens inside of a loop:

* The break command

e The continue command

Each command has a different use in how to control the operation of a loop. The
following sections describe how you can use these commands to control the operation
of your loops.

The break Command

321

The Linux Command Line & Shell Scripting Bible 2™ Edition

The break command is a simple way to escape out of a loop in progress. You can use
the break command to exit out of any type of loop, including while and until loops.

There are several situations in which you can use the break command. This section
shows each of these methods.

Breaking Out of a Single Loop

When the shell executes a break command, it attempts to break out of the loop that's
currently processing:

$ cat testl?7
#!/bin/bash

breaking out of a for loop

for varl in 123 4567 8 9 10
do

if [$varl -eq 5]

then

break

fi

echo “Iteration number: $varl”
done
echo “The for loop is completed”
$./testl?
Iteration number: 1
Iteration number: 2
Iteration number: 3
Iteration number: 4
The for loop is completed

$

The for loop should normally have iterated through all of the values specified in the
list. However, when the if-then condition was satisfied, the shell executed
the break command, which stopped the for loop.

This technique also works for while and until loops:
$ cat testl8
#!/bin/bash

breaking out of a while loop

322

The Linux Command Line & Shell Scripting Bible 2™ Edition

varl=1

while [$varl -1t 10]
do

if [$varl -eq 5]

then

break

fi

echo “Iteration: $varl”

varl=$[$varl + 1]
done
echo “The while loop is completed”
$./testl8
Iteration:

Iteration:

w N =

Iteration:
Iteration: 4
The while loop is completed

$

The while loop terminated when the if-then condition was met, executing
the break command.

Breaking Out of an Inner Loop

When you're working with multiple loops, the break command automatically terminates
the innermost loop you're in:

$ cat testl9
#!/bin/bash

breaking out of an inner loop

for ((a=1; a < 4; a++))
do
echo “Outer loop: $a”

for ((b =1; b <100; b++))

323

The Linux Command Line & Shell Scripting Bible 2™ Edition

do
if [$b -eq 5 1
then
break
fi

u

echo Inner loop: $b”
done

done

$./testl9

OQuter loop: 1
Inner loop:
Inner loop:

Inner loop:

A~ W N =

Inner loop:
Outer loop: 2
Inner loop:
Inner loop:

Inner loop:

A W N =

Inner loop:
Outer loop: 3
Inner loop:
Inner loop:

Inner loop:

A W N =

Inner loop:

$

The for statement in the inner loop specifies to iterate until the b variable is equal to
100. However, the if-then statement in the inner loop specifies that when
the b variable value is equal to five, the break command is executed. Notice that even
though the inner loop is terminated with the break command, the outer loop continues
working as specified.

Breaking Out of an Outer Loop

There may be times when you're in an inner loop but need to stop the outer loop.
The break command includes a single command line parameter value:

break

324

The Linux Command Line & Shell Scripting Bible 2™ Edition

n

where n indicates the level of the loop to break out of. By default, nis 1, indicating to
break out of the current loop. If you set n to a value of 2, the break command will stop
the next level of the outer loop:

$ cat test20
#!/bin/bash

breaking out of an outer loop

for ((a=1; a < 4; a++))
do
echo “Outer loop: $a”
for ((b =1; b < 100; b++))
do
if [$b -gt 4]
then
break 2
fi

au

echo Inner loop: $b”
done

done

$./test20

Outer loop: 1

Inner loop: 1
Inner loop: 2
Inner loop: 3
Inner loop: 4

$
Now when the shell executes the break command, the outer loop stops.

The continue Command

The continue command is a way to prematurely stop processing commands inside of a
loop but not terminate the loop completely. This allows you to set conditions within a
loop where the shell won't execute commands. Here's a simple example of using
the continue command in a for loop:

$ cat test2l

325

The Linux Command Line & Shell Scripting Bible 2™ Edition

#!/bin/bash

using the continue command

for ((varl = 1; varl < 15; varl++))
do

if [$varl -gt 51 & [$varl -1t 10]

then

continue

fi

echo “Iteration number: $varl”
done
$./test2l
Iteration number:
Iteration number:
Iteration number:

Iteration number:

o A~ W N =

Iteration number:
Iteration number: 10
Iteration number: 11
Iteration number: 12
Iteration number: 13
Iteration number: 14

$

When the conditions of the if-then statement are met (the value is greater than five
and less than 10), the shell executes the continue command, which skips the rest of
the commands in the loop, but keeps the loop going. When theif-then condition is no
longer met, things return back to normal.

You can use the continue command in while and until loops, but be extremely
careful with what you're doing. Remember, when the shell executes
the continue command, it skips the remaining commands. If you're incrementing your
test condition variable in one of those conditions, bad things will happen:

$ cat badtest3
#!/bin/bash

improperly using the continue command in a while loop

326

The Linux Command Line & Shell Scripting Bible 2™ Edition

varl=0

while echo “while iteration:

[$varl -1t 15]
do

$varl”

if [$varl -gt 51 & [$varl -1t 10]

then
continue
fi
echo “ Inside iteration number:

varl=$[$varl + 1]
done
$./badtest3 | more

while iteration: 0

Inside iteration number:

while iteration: 1

Inside iteration number:

while iteration: 2

Inside iteration number:

while iteration: 3

Inside iteration number:

while iteration: 4

Inside iteration number:

while iteration: 5

Inside iteration number:

while iteration: 6
while iteration:
while iteration:
while iteration:
while iteration:
while iteration:

while iteration:

o O O O o o O

while iteration:

$varl”

327

The Linux Command Line & Shell Scripting Bible 2™ Edition

while iteration: 6
while iteration: 6
while iteration: 6

$

You'll want to make sure you redirect the output of this script to the more command
so you can stop things. Everything seems to be going just fine until the if-
then condition is met, and the shell executes the continuecommand. When the shell
executes the continue command, it skips the remaining commands in the while loop.
Unfortunately, that's where the $varl counter variable that is tested in the while test
command is incremented. That meant that the variable wasn't incremented, as you can
see from the continually displaying output.

As with the break command, the continue command allows you to specify what
level of loop to continue with a command line parameter:

continue
n

where n defines the loop level to continue. Here's an example of continuing an
outer for loop:

$ cat test22
#!/bin/bash

continuing an outer loop

for ((a=1; a <= 5; a++))
do
echo “Iteration $a:”
for ((b =1; b < 3; b++))
do
if [$a -gt 2] & [$a -1t 4]
then
continue 2
fi
var3=$[%$a * $b 1]
echo “ The result of $a * $b is $var3”
done
done
$./test22

Iteration 1:

328

The Linux Command Line & Shell Scripting Bible 2™ Edition

The result of 1 * 1
The result of 1 * 2

Iteration 2:

The result of 2 * 1
The result of 2 * 2

Iteration 3:

Iteration 4:

The result of 4 * 1
The result of 4 * 2

Iteration 5:

The result of 5 * 1
The result of 5 * 2

$
The if-then statement:

if [$a -gt 2 1 & [$a -1t 4]

then
continue 2

fi

is

is

is

is

is

is

is

is

1
2

10

uses the continue command to stop processing the commands inside the loop but
continue the outer loop. Notice in the script output that the iteration for the value 3
doesn't process any inner loop statements, as the continuecommand stopped the

processing, but continues with the outer loop processing.

Processing the Output of a Loop

Finally, you can either pipe or redirect the output of a loop within your shell script. You

do this by adding the processing command to the end of the done command:

for file in /home/rich*

do
if [-d “$file”]
then

echo “$file is a directory”

elif

echo “$file is a file”

fi

329

The Linux Command Line & Shell Scripting Bible 2™ Edition

done > output.txt

Instead of displaying the results on the monitor, the shell redirects the results of
the for command to the fileoutput. txt.

Consider the following example of redirecting the output of a for command to a file:
$ cat test23
#!/bin/bash

redirecting the for output to a file

for ((a=1; a < 10; a++))
do

echo “The number is $a”
done > test23.txt
echo “The command is finished.”
$./test23
The command is finished.
$ cat test23.txt
The number is 1
The number is
The number is
The number is
The number is
The number is
The number is

The number is

© 00 N o U B~ W N

The number is

$

The shell creates the file test23.txt and redirects the output of the for command
only to the file. The shell displays the echo statement after the for command just as
normal.

This same technique also works for piping the output of a loop to another command:
$ cat test24
#!/bin/bash

piping a loop to another command

330

The Linux Command Line & Shell Scripting Bible 2™ Edition

for state in “North Dakota” Connecticut Illinois Alabama Tennessee
do

echo “$state is the next place to go”
done | sort
echo “This completes our travels”
$./test24
Alabama is the next place to go
Connecticut is the next place to go
Illinois is the next place to go
North Dakota is the next place to go
Tennessee is the next place to go
This completes our travels

$

The state values aren't listed in any particular order in the for command list. The
output of the for command is piped to the sort command, which will change the order
of the for command output. Running the script indeed shows that the output was
properly sorted within the script.

Summary

Looping is an integral part of programming. The bash shell provides three different
looping commands that you can use in your scripts. The for command allows you to
iterate through a list of values, either supplied within the command line, contained in a
variable, or obtained by using file globbing, to extract file and directory names from a
wildcard character.

The while command provides a method to loop based on the condition of a
command, using either ordinary commands or the test command, which allows you to
test conditions of variables. As long as the command (or condition) produces a zero exit
status, the while loop will continue to iterate through the specified set of commands.

The until command also provides a method to iterate through commands, but it
bases its iterations on a command (or condition) producing a non-zero exit status. This
feature allows you to set a condition that must be met before the iteration stops.

You can combine loops in shell scripts, producing multiple layers of loops. The bash
shell provides the continueand break commands, which allow you to alter the flow of
the normal loop process based on different values within the loop.

The bash shell also allows you to use standard command redirection and piping to
alter the output of a loop. You can use redirection to redirect the output of a loop to a file
or piping to redirect the output of a loop to another command. This provides a wealth of
features with which you can control your shell script execution.

331

	2_cas_procesi
	2_cas_procesi2
	2_cas_fileaccess
	2_cas_emacs
	2_cas_bash

