
120

5 Controlling Processes

A process is the abstraction used by UNIX and Linux to represent a running pro-
gram. It’s the object through which a program’s use of memory, processor time,
and I/O resources can be managed and monitored.

It is part of the UNIX philosophy that as much work as possible be done within
the context of processes, rather than handled specially by the kernel. System and
user processes all follow the same rules, so you can use a single set of tools to
control them both.

5.1 COMPONENTS OF A PROCESS

A process consists of an address space and a set of data structures within the ker-
nel. The address space is a set of memory pages1 that the kernel has marked for
the process’s use. It contains the code and libraries that the process is executing,
the process’s variables, its stacks, and various extra information needed by the ker-
nel while the process is running. Because UNIX and Linux are virtual memory
systems, there is no correlation between a page’s location within a process’s ad-
dress space and its location inside the machine’s physical memory or swap space.

1. Pages are the units in which memory is managed, usually between 1KiB and 8KiB in size.

Processes

From the Library of Wow! eBook .Com

PPID: parent PID 121

Pr
oc
es
se
s

The kernel’s internal data structures record various pieces of information about
each process. Here are some of the more important of these:

• The process’s address space map
• The current status of the process (sleeping, stopped, runnable, etc.)
• The execution priority of the process
• Information about the resources the process has used
• Information about the files and network ports the process has opened
• The process’s signal mask (a record of which signals are blocked)
• The owner of the process

An execution thread, usually known simply as a thread, is the result of a fork in
execution within a process. A thread inherits many of the attributes of the process
that contains it (such as the process’s address space), and multiple threads can
execute concurrently within a single process under a model called multithreading.

Concurrent execution is simulated by the kernel on old-style uniprocessor sys-
tems, but on multicore and multi-CPU architectures the threads can run simulta-
neously on different cores. Multithreaded applications such as BIND and Apache
benefit the most from multicore systems since the applications can work on more
than one request simultaneously. All our example operating systems support mul-
tithreading.

Many of the parameters associated with a process directly affect its execution: the
amount of processor time it gets, the files it can access, and so on. In the following
sections, we discuss the meaning and significance of the parameters that are most
interesting from a system administrator’s point of view. These attributes are com-
mon to all versions of UNIX and Linux.

PID: process ID number

The kernel assigns a unique ID number to every process.2 Most commands and
system calls that manipulate processes require you to specify a PID to identify the
target of the operation. PIDs are assigned in order as processes are created.

PPID: parent PID

Neither UNIX nor Linux has a system call that initiates a new process running a
particular program. Instead, an existing process must clone itself to create a new
process. The clone can then exchange the program it’s running for a different one.

When a process is cloned, the original process is referred to as the parent, and the
copy is called the child. The PPID attribute of a process is the PID of the parent
from which it was cloned.3

2. As pointed out by our reviewer Jon Corbet, Linux kernel 2.6.24 introduced process ID namespaces,
which allow multiple processes with the same PID to exist concurrently. This feature was implemented
to support container-based virtualization.

3. At least initially. If the original parent dies, init (process 1) becomes the new parent. See page 124.

From the Library of Wow! eBook .Com

122 Chapter 5 Controlling Processes

The parent PID is a useful piece of information when you’re confronted with an
unrecognized (and possibly misbehaving) process. Tracing the process back to its
origin (whether a shell or another program) may give you a better idea of its pur-
pose and significance.

UID and EUID: real and effective user ID

See page 180 for
more information
about UIDs.

A process’s UID is the user identification number of the person who created it, or
more accurately, it is a copy of the UID value of the parent process. Usually, only
the creator (aka the “owner”) and the superuser can manipulate a process.

The EUID is the “effective” user ID, an extra UID used to determine what re-
sources and files a process has permission to access at any given moment. For
most processes, the UID and EUID are the same, the usual exception being pro-
grams that are setuid.

Why have both a UID and an EUID? Simply because it’s useful to maintain a
distinction between identity and permission, and because a setuid program may
not wish to operate with expanded permissions all the time. On most systems, the
effective UID can be set and reset to enable or restrict the additional permissions
it grants.

Most systems also keep track of a “saved UID,” which is a copy of the process’s
EUID at the point at which the process first begins to execute. Unless the process
takes steps to obliterate this saved UID, it remains available for use as the real or
effective UID. A conservatively written setuid program can therefore renounce its
special privileges for the majority of its execution, accessing them only at the spe-
cific points at which extra privileges are needed.

Linux also defines a nonstandard FSUID process parameter that controls the de-
termination of filesystem permissions. It is infrequently used outside the kernel
and is not portable to other UNIX systems.

GID and EGID: real and effective group ID

See page 181 for
more information
about groups.

The GID is the group identification number of a process. The EGID is related to
the GID in the same way that the EUID is related to the UID in that it can be
“upgraded” by the execution of a setgid program. A saved GID is maintained. It is
similar in intent to the saved UID.

The GID attribute of a process is largely vestigial. For purposes of access determi-
nation, a process can be a member of many groups at once. The complete group
list is stored separately from the distinguished GID and EGID. Determinations of
access permissions normally take into account the EGID and the supplemental
group list, but not the GID.

The only time at which the GID really gets to come out and play is when a process
creates new files. Depending on how the filesystem permissions have been set,
new files may adopt the GID of the creating process. See page 154 for details.

From the Library of Wow! eBook .Com

The life cycle of a process 123

Pr
oc
es
se
s

Niceness

A process’s scheduling priority determines how much CPU time it receives. The
kernel uses a dynamic algorithm to compute priorities, allowing for the amount of
CPU time that a process has recently consumed and the length of time it has been
waiting to run. The kernel also pays attention to an administratively set value
that’s usually called the “nice value” or “niceness,” so called because it tells how
nice you are planning to be to other users of the system. We discuss niceness in
detail on page 129.

In an effort to provide better support for low-latency applications, Linux has
added “scheduling classes” to the traditional UNIX scheduling model. There are
currently three classes, and each process is assigned to one class. Unfortunately,
the real-time classes are neither widely used nor well supported from the com-
mand line. System processes use the traditional (niceness) scheduler, which is the
only one we discuss in this book. See realtimelinuxfoundation.org for more dis-
cussion of issues related to real-time scheduling.

Control terminal

Most nondaemon processes have an associated control terminal. The control ter-
minal determines default linkages for the standard input, standard output, and
standard error channels. When you start a command from the shell, your termi-
nal window normally becomes the process’s control terminal. The concept of a
control terminal also affects the distribution of signals, which are discussed start-
ing on page 124.

5.2 THE LIFE CYCLE OF A PROCESS

To create a new process, a process copies itself with the fork system call. fork
creates a copy of the original process; that copy is largely identical to the parent.
The new process has a distinct PID and has its own accounting information.

fork has the unique property of returning two different values. From the child’s
point of view, it returns zero. The parent receives the PID of the newly created
child. Since the two processes are otherwise identical, they must both examine the
return value to figure out which role they are supposed to play.

After a fork, the child process will often use one of the exec family of system calls
to begin the execution of a new program.4 These calls change the program that the
process is executing and reset the memory segments to a predefined initial state.
The various forms of exec differ only in the ways in which they specify the com-
mand-line arguments and environment to be given to the new program.

When the system boots, the kernel autonomously creates and installs several pro-
cesses. The most notable of these is init, which is always process number 1. init is
responsible for executing the system’s startup scripts, although the exact manner

4. Actually, all but one are library routines rather than system calls.

From the Library of Wow! eBook .Com

124 Chapter 5 Controlling Processes

in which this is done differs slightly between UNIX and Linux. All processes other
than the ones the kernel creates are descendants of init. See Chapter 3 for more
information about booting and the init daemon.

init also plays another important role in process management. When a process
completes, it calls a routine named _exit to notify the kernel that it is ready to die.
It supplies an exit code (an integer) that tells why it’s exiting. By convention, 0 is
used to indicate a normal or “successful” termination.

Before a process can be allowed to disappear completely, the kernel requires that
its death be acknowledged by the process’s parent, which the parent does with a
call to wait. The parent receives a copy of the child’s exit code (or an indication of
why the child was killed if the child did not exit voluntarily) and can also obtain a
summary of the child’s use of resources if it wishes.

This scheme works fine if parents outlive their children and are conscientious
about calling wait so that dead processes can be disposed of. If the parent dies
first, however, the kernel recognizes that no wait will be forthcoming and adjusts
the process to make the orphan a child of init. init politely accepts these orphaned
processes and performs the wait needed to get rid of them when they die.

5.3 SIGNALS

Signals are process-level interrupt requests. About thirty different kinds are de-
fined, and they’re used in a variety of ways:

• They can be sent among processes as a means of communication.

• They can be sent by the terminal driver to kill, interrupt, or suspend
processes when keys such as <Control-C> and <Control-Z> are typed.5

• They can be sent by an administrator (with kill) to achieve various ends.

• They can be sent by the kernel when a process commits an infraction
such as division by zero.

• They can be sent by the kernel to notify a process of an “interesting”
condition such as the death of a child process or the availability of data
on an I/O channel.

A core dump is
a process’s memory
image. It can be used
for debugging.

When a signal is received, one of two things can happen. If the receiving process
has designated a handler routine for that particular signal, the handler is called
with information about the context in which the signal was delivered. Otherwise,
the kernel takes some default action on behalf of the process. The default action
varies from signal to signal. Many signals terminate the process; some also gener-
ate a core dump.

5. The functions of <Control-Z> and <Control-C> can be reassigned to other keys with the stty com-
mand, but this is rare in practice. In this chapter we refer to them by their conventional bindings.

From the Library of Wow! eBook .Com

Signals 125

Pr
oc
es
se
s

Specifying a handler routine for a signal within a program is referred to as catch-
ing the signal. When the handler completes, execution restarts from the point at
which the signal was received.

To prevent signals from arriving, programs can request that they be either ignored
or blocked. A signal that is ignored is simply discarded and has no effect on the
process. A blocked signal is queued for delivery, but the kernel doesn’t require the
process to act on it until the signal has been explicitly unblocked. The handler for
a newly unblocked signal is called only once, even if the signal was received sev-
eral times while reception was blocked.

Table 5.1 lists some signals with which all administrators should be familiar. The
uppercase convention for the names derives from C language tradition. You might
also see signal names written with a SIG prefix (e.g., SIGHUP) for similar reasons.

Other signals, not shown in Table 5.1, mostly report obscure errors such as “illegal
instruction.” The default handling for signals like that is to terminate with a core
dump. Catching and blocking are generally allowed because some programs may
be smart enough to try to clean up whatever problem caused the error before
continuing.

The BUS and SEGV signals are also error signals. We’ve included them in the
table because they’re so common: when a program crashes, it’s usually one of
these two signals that finally brings it down. By themselves, the signals are of no

Table 5.1 Signals every administrator should knowa

Name Description Default
Can

catch?
Can

block?
Dump
core?

1 HUP Hangup Terminate Yes Yes No
2 INT Interrupt Terminate Yes Yes No
3 QUIT Quit Terminate Yes Yes Yes
9 KILL Kill Terminate No No No
–b BUS Bus error Terminate Yes Yes Yes
11 SEGV Segmentation fault Terminate Yes Yes Yes
15 TERM Software termination Terminate Yes Yes No
–b STOP Stop Stop No No No
–b TSTP Keyboard stop Stop Yes Yes No
–b CONT Continue after stop Ignore Yes No No
–b WINCH Window changed Ignore Yes Yes No
–b USR1 User-defined #1 Terminate Yes Yes No
–b USR2 User-defined #2 Terminate Yes Yes No

a. A list of signal names and numbers is also available from the bash built-in command kill -l.
b. Varies among systems. See /usr/include/signal.h or man signal for more specific information.

From the Library of Wow! eBook .Com

126 Chapter 5 Controlling Processes

specific diagnostic value. Both of them indicate an attempt to use or access mem-
ory improperly.6

The signals named KILL and STOP cannot be caught, blocked, or ignored. The
KILL signal destroys the receiving process, and STOP suspends its execution until
a CONT signal is received. CONT may be caught or ignored, but not blocked.

TSTP is a “soft” version of STOP that might be best described as a request to stop.
It’s the signal generated by the terminal driver when <Control-Z> is typed on the
keyboard. Programs that catch this signal usually clean up their state, then send
themselves a STOP signal to complete the stop operation. Alternatively, programs
can ignore TSTP to prevent themselves from being stopped from the keyboard.

Terminal emulators send a WINCH signal when their configuration parameters
(such as the number of lines in the virtual terminal) change. This convention al-
lows emulator-savvy programs such as text editors to reconfigure themselves au-
tomatically in response to changes. If you can’t get windows to resize properly,
make sure that WINCH is being generated and propagated correctly.7

The signals KILL, INT, TERM, HUP, and QUIT all sound as if they mean approx-
imately the same thing, but their uses are actually quite different. It’s unfortunate
that such vague terminology was selected for them. Here’s a decoding guide:

• KILL is unblockable and terminates a process at the kernel level. A pro-
cess can never actually receive this signal.

• INT is sent by the terminal driver when you type <Control-C>. It’s a
request to terminate the current operation. Simple programs should quit
(if they catch the signal) or simply allow themselves to be killed, which is
the default if the signal is not caught. Programs that have an interactive
command line (such as a shell) should stop what they’re doing, clean up,
and wait for user input again.

• TERM is a request to terminate execution completely. It’s expected that
the receiving process will clean up its state and exit.

• HUP has two common interpretations. First, it’s understood as a reset
request by many daemons. If a daemon is capable of rereading its config-
uration file and adjusting to changes without restarting, a HUP can gen-
erally be used to trigger this behavior.

6. More specifically, bus errors result from violations of alignment requirements or the use of nonsensi-
cal addresses. Segmentation violations represent protection violations such as attempts to write to
read-only portions of the address space.

7. Which may be easier said than done. The terminal emulator (e.g., xterm), terminal driver, and user-
level commands may all have a role in propagating SIGWINCH. Common problems include sending
the signal to a terminal’s foreground process only (rather than to all processes associated with the ter-
minal) and failing to propagate notification of a size change across the network to a remote computer.
Protocols such as Telnet and SSH explicitly recognize local terminal size changes and communicate
this information to the remote host. Simpler protocols (e.g., direct serial lines) cannot do this.

From the Library of Wow! eBook .Com

kill: send signals 127

Pr
oc
es
se
s

Second, HUP signals are sometimes generated by the terminal driver in
an attempt to “clean up” (i.e., kill) the processes attached to a particular
terminal. This behavior is largely a holdover from the days of wired ter-
minals and modem connections, hence the name “hangup.”

Shells in the C shell family (tcsh et al.) usually make background pro-
cesses immune to HUP signals so that they can continue to run after the
user logs out. Users of Bourne-ish shells (ksh, bash, etc.) can emulate
this behavior with the nohup command.

• QUIT is similar to TERM, except that it defaults to producing a core
dump if not caught. A few programs cannibalize this signal and interpret
it to mean something else.

The signals USR1 and USR2 have no set meaning. They’re available for programs
to use in whatever way they’d like. For example, the Apache web server interprets
the USR1 signal as a request to gracefully restart.

5.4 KILL: SEND SIGNALS

As its name implies, the kill command is most often used to terminate a process.
kill can send any signal, but by default it sends a TERM. kill can be used by nor-
mal users on their own processes or by root on any process. The syntax is

kill [-signal] pid

where signal is the number or symbolic name of the signal to be sent (as shown in
Table 5.1) and pid is the process identification number of the target process.

A kill without a signal number does not guarantee that the process will die, be-
cause the TERM signal can be caught, blocked, or ignored. The command

kill -9 pid

“guarantees” that the process will die because signal 9, KILL, cannot be caught.
Use kill -9 only if a polite request fails. We put quotes around “guarantees” be-
cause processes can occasionally become so wedged that even KILL does not af-
fect them (usually because of some degenerate I/O vapor lock such as waiting for
a disk that has stopped spinning). Rebooting is usually the only way to get rid of
these processes.

The killall command performs wildly different functions on UNIX and Linux.
Under Linux, killall kills processes by name. For example, the following com-
mand kills all Apache web server processes:

ubuntu$ sudo killall httpd

The standard UNIX killall command that ships with Solaris, HP-UX, and AIX
takes no arguments and simply kills all the current user’s processes. Running it as
root kills init and shuts down the machine. Oops.

From the Library of Wow! eBook .Com

128 Chapter 5 Controlling Processes

The pgrep and pkill commands for Solaris, HP-UX, and Linux (but not AIX)
search for processes by name (or other attributes, such as EUID) and display or
signal them, respectively. For example, the following command sends a TERM
signal to all processes running as the user ben:

$ sudo pkill -u ben

5.5 PROCESS STATES

A process is not automatically eligible to receive CPU time just because it exists.
You need to be aware of the four execution states listed in Table 5.2.

A runnable process is ready to execute whenever CPU time is available. It has
acquired all the resources it needs and is just waiting for CPU time to process its
data. As soon as the process makes a system call that cannot be immediately com-
pleted (such as a request to read part of a file), the kernel puts it to sleep.

Sleeping processes are waiting for a specific event to occur. Interactive shells and
system daemons spend most of their time sleeping, waiting for terminal input or
network connections. Since a sleeping process is effectively blocked until its re-
quest has been satisfied, it will get no CPU time unless it receives a signal or a
response to one of its I/O requests.

Some operations cause processes to enter an uninterruptible sleep state. This state
is usually transient and not observed in ps output (indicated by a D in the STAT
column; see Table 5.4 on page 132). However, a few degenerate situations can
cause it to persist. The most common cause involves server problems on an NFS
filesystem mounted with the “hard” option. Since processes in the uninterruptible
sleep state cannot be roused even to service a signal, they cannot be killed. To get
rid of them, you must fix the underlying problem or reboot.

Zombies are processes that have finished execution but have not yet had their
status collected. If you see zombies hanging around, check their PPIDs with ps to
find out where they’re coming from.

Stopped processes are administratively forbidden to run. Processes are stopped on
receipt of a STOP or TSTP signal and are restarted with CONT. Being stopped is
similar to sleeping, but there’s no way for a process to get out of the stopped state
other than having some other process wake it up (or kill it).

Table 5.2 Process states

State Meaning

Runnable The process can be executed.
Sleeping The process is waiting for some resource.
Zombie The process is trying to die.
Stopped The process is suspended (not allowed to execute).

From the Library of Wow! eBook .Com

nice and renice: influence scheduling priority 129

Pr
oc
es
se
s

5.6 NICE AND RENICE: INFLUENCE SCHEDULING PRIORITY

The “niceness” of a process is a numeric hint to the kernel about how the process
should be treated in relation to other processes contending for the CPU. The
strange name is derived from the fact that it determines how nice you are going to
be to other users of the system. A high nice value means a low priority for your
process: you are going to be nice. A low or negative value means high priority: you
are not very nice.

The range of allowable niceness values varies among systems. The most common
range is -20 to +19. Some systems use a range of a similar size beginning at 0
instead of a negative number (typically 0 to 39). The ranges used on our example
systems are shown in Table 5.3 on the next page.

Despite their numeric differences, all systems handle nice values in much the
same way. Unless the user takes special action, a newly created process inherits
the nice value of its parent process. The owner of the process can increase its nice
value but cannot lower it, even to return the process to the default niceness. This
restriction prevents processes with low priority from bearing high-priority chil-
dren. The superuser may set nice values arbitrarily.

It’s rare to have occasion to set priorities by hand these days. On the puny systems
of the 1970s and 80s, performance was significantly affected by which process was
on the CPU. Today, with more than adequate CPU power on every desktop, the
scheduler does a good job of servicing all processes. The addition of scheduling
classes gives developers additional control when fast response is essential.

I/O performance has not kept up with increasingly fast CPUs, and the major bot-
tleneck on most systems has become the disk drives. Unfortunately, a process’s
nice value has no effect on the kernel’s management of its memory or I/O; high-
nice processes can still monopolize a disproportionate share of these resources.

A process’s nice value can be set at the time of creation with the nice command
and adjusted later with the renice command. nice takes a command line as an
argument, and renice takes a PID or (sometimes) a username.

Some examples:
$ nice -n 5 ~/bin/longtask // Lowers priority (raise nice) by 5
$ sudo renice -5 8829 // Sets nice value to -5
$ sudo renice 5 -u boggs // Sets nice value of boggs’s procs to 5

Unfortunately, there is little agreement among systems about how the desired pri-
orities should be specified; in fact, even nice and renice from the same system
usually don’t agree. Some commands want a nice value increment, whereas others
want an absolute nice value. Some want their nice values preceded by a dash. Oth-
ers want a flag (-n), and some just want a value.

To complicate things, a version of nice is built into the C shell and some other
common shells (but not bash). If you don’t type the full path to nice, you’ll get the

From the Library of Wow! eBook .Com

130 Chapter 5 Controlling Processes

shell’s version rather than the operating system’s. This duplication can be confus-
ing because shell-nice and command-nice use different syntax: the shell wants its
priority increment expressed as +incr or -incr, but the stand-alone command
wants an -n flag followed by the priority increment.8

Table 5.3 summarizes all these variations. A prio is an absolute nice value, while
an incr is relative to the niceness of the shell from which nice or renice is run.
Wherever an -incr or a -prio is called for, you can use a double dash to enter nega-
tive values (e.g., --10). Only the shell nice understands plus signs (in fact, it re-
quires them); leave them out in all other circumstances.

The most commonly niced process in the modern world is ntpd, the clock syn-
chronization daemon. Since promptness is critical to its mission, it usually runs at
a nice value about 12 below the default (that is, at a higher priority than normal).

If a problem drives the system’s load average to 65, you may need to use nice to
start a high-priority shell before you can run commands to investigate the prob-
lem. Otherwise, you may have difficulty running even simple commands.

5.7 PS: MONITOR PROCESSES

ps is the system administrator’s main tool for monitoring processes. While ver-
sions of ps differ in their arguments and display, they all deliver essentially the
same information. Part of the enormous variation among versions of ps can be
traced back to differences in the development history of UNIX. However, ps is
also a command that vendors tend to customize for other reasons. It’s closely tied
to the kernel’s handling of processes, so it tends to reflect all of a vendors’ underly-
ing kernel changes.

ps can show the PID, UID, priority, and control terminal of processes. It also gives
information about how much memory a process is using, how much CPU time it
has consumed, and its current status (running, stopped, sleeping, etc.). Zombies
show up in a ps listing as <exiting> or <defunct>.

8. Actually, it’s worse than this: the stand-alone nice interprets nice -5 to mean a positive increment of 5,
whereas the shell built-in nice interprets this same form to mean a negative increment of 5.

Table 5.3 How to express priorities for various versions of nice and renice

System Range OS nice csh nice renice

Linux -20 to 19 -incr or -n incr +incr or -incr prio
Solaris 0 to 39 -incr or -n incr +incr or -incr incr or -n incr
HP-UX 0 to 39 -prio or -n prio +incr or -incr -n prioa

AIX -20 to 19 -incr or -n incr +incr or -incr -n incr

a. Uses absolute priority, but adds 20 to the value you specify.

From the Library of Wow! eBook .Com

ps: monitor processes 131

Pr
oc
es
se
s

Implementations of ps have become hopelessly complex over the last decade. Sev-
eral vendors have abandoned the attempt to define meaningful displays and made
their pses completely configurable. With a little customization work, almost any
desired output can be produced. As a case in point, the ps used by Linux is a
trisexual and hermaphroditic version that understands multiple option sets and
uses an environment variable to tell it what universe it’s living in.

Do not be alarmed by all this complexity: it’s there mainly for developers, not for
system administrators. Although you will use ps frequently, you only need to
know a few specific incantations.

On Linux and AIX, you can obtain a useful overview of all the processes running
on the system with ps aux. The a option means to show all processes, x means to
show even processes that don’t have a control terminal, and u selects the “user
oriented” output format. Here’s an example of ps aux output on a machine run-
ning Red Hat (AIX output for the same command differs slightly):

redhat$ ps aux
USER PID %CPU%MEM VSZ RSS TTY STAT TIME COMMAND

root 1 0.1 0.2 3356 560 ? S 0:00 init [5]
root 2 0 0 0 0 ? SN 0:00 [ksoftirqd/0]
root 3 0 0 0 0 ? S< 0:00 [events/0]
root 4 0 0 0 0 ? S< 0:00 [khelper]
root 5 0 0 0 0 ? S< 0:00 [kacpid]
root 18 0 0 0 0 ? S< 0:00 [kblockd/0]
root 28 0 0 0 0 ? S 0:00 [pdflush]

…
root 196 0 0 0 0 ? S 0:00 [kjournald]
root 1050 0 0.1 2652 448 ? S<s 0:00 udevd
root 1472 0 0.3 3048 1008 ? S<s 0:00 /sbin/dhclient -1
root 1646 0 0.3 3012 1012 ? S<s 0:00 /sbin/dhclient -1
root 1733 0 0 0 0 ? S 0:00 [kjournald]
root 2124 0 0.3 3004 1008 ? Ss 0:00 /sbin/dhclient -1
root 2182 0 0.2 2264 596 ? Ss 0:00 syslogd -m 0
root 2186 0 0.1 2952 484 ? Ss 0:00 klogd -x
rpc 2207 0 0.2 2824 580 ? Ss 0:00 portmap

rpcuser 2227 0 0.2 2100 760 ? Ss 0:00 rpc.statd
root 2260 0 0.4 5668 1084 ? Ss 0:00 rpc.idmapd
root 2336 0 0.2 3268 556 ? Ss 0:00 /usr/sbin/acpid
root 2348 0 0.8 9100 2108 ? Ss 0:00 cupsd
root 2384 0 0.6 4080 1660 ? Ss 0:00 /usr/sbin/sshd
root 2399 0 0.3 2780 828 ? Ss 0:00 xinetd -stayalive
root 2419 0 1.1 7776 3004 ? Ss 0:00 sendmail: accept

…

Command names in brackets are not really commands at all but rather kernel
threads scheduled as processes. The meaning of each field is shown in Table 5.4
on the next page.

Another useful set of arguments for Linux and AIX is lax, which provides more
technical information. The a and x options are as above (show every process), and

From the Library of Wow! eBook .Com

132 Chapter 5 Controlling Processes

l selects the “long” output format. ps lax is also slightly faster to run than ps aux
because it doesn’t have to translate every UID to a username—efficiency can be
important if the system is already bogged down.

Shown here in an abbreviated example, ps lax includes fields such as the parent
process ID (PPID), nice value (NI), and the type of resource on which the process
is waiting (WCHAN).

redhat$ ps lax
F UID PID PPID PRI NI VSZ RSS WCHAN STAT TIME COMMAND
4 0 1 0 16 0 3356 560 select S 0:00 init [5]
1 0 2 1 34 19 0 0 ksofti SN 0:00 [ksoftirqd/0
1 0 3 1 5-10 0 0 worker S< 0:00 [events/0]
1 0 4 3 5-10 0 0 worker S< 0:00 [khelper]
5 0 2186 1 16 0 2952 484 syslog Ss 0:00 klogd -x
5 32 2207 1 15 0 2824 580 - Ss 0:00 portmap
5 29 2227 1 18 0 2100 760 select Ss 0:00 rpc.statd
1 0 2260 1 16 0 5668 1084 - Ss 0:00 rpc.idmapd
1 0 2336 1 21 0 3268 556 select Ss 0:00 acpid
5 0 2384 1 17 0 4080 1660 select Ss 0:00 sshd
1 0 2399 1 15 0 2780 828 select Ss 0:00 xinetd -sta
5 0 2419 1 16 0 7776 3004 select Ss 0:00 sendmail: a

…

Table 5.4 Explanation of ps aux output

Field Contents

USER Username of the process’s owner
PID Process ID
%CPU Percentage of the CPU this process is using
%MEM Percentage of real memory this process is using
VSZ Virtual size of the process
RSS Resident set size (number of pages in memory)
TTY Control terminal ID
STAT Current process status:

R = Runnable D = In uninterruptible sleep
S = Sleeping (< 20 sec) T = Traced or stopped
Z = Zombie

Additional flags:
W= Process is swapped out
< = Process has higher than normal priority
N= Process has lower than normal priority
L = Some pages are locked in core
s = Process is a session leader

TIME CPU time the process has consumed
COMMAND Command name and argumentsa

a. Programs can modify this info, so it’s not necessarily an accurate representation of the
actual command line.

From the Library of Wow! eBook .Com

Dynamic monitoring with top, prstat, and topas 133

Pr
oc
es
se
s

Under Solaris and HP-UX, ps -ef is a good place to start. The e option selects all
processes, and the f option sets the output format. (ps -ef also works on AIX and
Linux systems; note the dash.)

solaris$ ps -ef
UID PID PPID C STIME TTY TIME COMD
root 0 0 80 Dec 21 ? 0:02 sched
root 1 0 2 Dec 21 ? 4:32 /etc/init-
root 2 0 8 Dec 21 ? 0:00 pageout
root 171 1 80 Dec 21 ? 0:02 /usr/lib/sendmail-bd

trent 8482 8444 35 14:34:10 pts/7 0:00 ps-ef
trent 8444 8442 203 14:32:50 pts/7 0:01 -csh
…

The columns in the ps -ef output are explained in Table 5.5.

Like ps lax in the Linux and AIX worlds, ps -elf shows additional gory details on
Solaris and HP-UX systems:

% ps -elf
F S UID PID PPID C P NI ADDR SZ WCHAN TIME COMD

19 T root 0 0 80 0 SY f00c2fd8 0 0:02 sched
8 S root 1 0 65 1 20 ff26a800 88 ff2632c8 4:32 init-
8 S root 142 1 41 1 20 ff2e8000 176 f00cb69 0:00 syslogd

…

The STIME and TTY columns have been omitted to fit this page; they are identi-
cal to those produced with ps -ef. Nonobvious fields are described in Table 5.6 on
the next page.

5.8 DYNAMIC MONITORING WITH TOP, PRSTAT, AND TOPAS

Since commands like ps offer only a one-time snapshot of your system, it is often
difficult to grasp the big picture of what’s really happening. top is a free utility that
runs on many systems and provides a regularly updated summary of active pro-
cesses and their use of resources. On AIX, an equivalent utility is topas, and on
Solaris the analogous tool is prstat.

Table 5.5 Explanation of ps -ef output

Field Content Field Content

UID Username of the owner STIME Time the process was started
PID Process ID TTY Control terminal
PPID PID of the parent process TIME CPU time consumed
C CPU use/scheduling info COMD Command and arguments

From the Library of Wow! eBook .Com

134 Chapter 5 Controlling Processes

For example:
ubuntu$ top
top - 16:37:08 up 1:42, 2 users, load average: 0.01, 0.02, 0.06
Tasks: 76 total, 1 running, 74 sleeping, 1 stopped, 0 zombie
Cpu(s): 1.1% us, 6.3% sy, 0.6% ni, 88.6% id, 2.1% wa, 0.1% hi, 1.3% si
Mem: 256044k total, 254980k used, 1064k free, 15944k buffers
Swap: 524280k total, 0k used, 524280k free, 153192k cached

PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
3175 root 15 0 35436 12m 4896 S 4.0 5.2 01:41.9 X
3421 root 25 10 29916 15m 9808 S 2.0 6.2 01:10.5 rhn-applet-gui

1 root 16 0 3356 560 480 S 0.0 0.2 00:00.9 init
2 root 34 19 0 0 0 S 0.0 0 00:00.0 ksoftirqd/0
3 root 5 -10 0 0 0 S 0.0 0 00:00.7 events/0
4 root 5 -10 0 0 0 S 0.0 0 00:00.0 khelper
5 root 15 -10 0 0 0 S 0.0 0 00:00.0 kacpid

18 root 5 -10 0 0 0 S 0.0 0 00:00.0 kblockd/0
28 root 15 0 0 0 0 S 0.0 0 00:00.0 pdflush
29 root 15 0 0 0 0 S 0.0 0 00:00.3 pdflush
31 root 13 -10 0 0 0 S 0.0 0 00:00.0 aio/0
19 root 15 0 0 0 0 S 0.0 0 00:00.0 khubd
30 root 15 0 0 0 0 S 0.0 0 00:00.2 kswapd0

187 root 6 -10 0 0 0 S 0 0 00:00.0 kmirrord/0
196 root 15 0 0 0 0 S 0 0 00:01.3 kjournald

…

By default, the display updates every 10 seconds. The most CPU-consumptive
processes appear at the top. top also accepts input from the keyboard and allows
you to send signals and to renice processes, so you can observe how your actions
affect the overall condition of the machine.

Table 5.6 Explanation of ps -elf output

Field Contents

F Process flags; possible values vary by system (rarely useful for sysadmins)
S Process status:

O = Currently running S = Sleeping (waiting for event)
R = Eligible to run T = Stopped or being traced
Z = Zombie D = Uninterruptible sleep (disk, usually)

C Process CPU utilization/scheduling info
P Scheduling priority (internal to the kernel, different from nice value)
NI Nice value or SY for system processes
ADDR Memory address of the process
SZ Size (in pages) of the process in main memory
WCHAN Address of the object the process is waiting for

From the Library of Wow! eBook .Com

The /proc filesystem 135

Pr
oc
es
se
s

Root can run top with the -q option to goose it up to the highest possible priority.
This option can be very useful when you are trying to track down a process that
has already brought the system to its knees.

5.9 THE /PROC FILESYSTEM

The Linux versions of ps and top read their process status information from the
/proc directory, a pseudo-filesystem in which the kernel exposes a variety of in-
teresting information about the system’s state. Despite the name /proc (and the
name of the underlying filesystem type, “proc”), the information is not limited to
process information—a variety of status information and statistics generated by
the kernel are represented here. You can even modify some parameters by writing
to the appropriate /proc file. See page 421 for some examples.

Although some of the information is easier to access through front-end com-
mands such as vmstat and ps, some of the less popular information must be read
directly from /proc. It’s worth poking around in this directory to familiarize your-
self with everything that’s there. man proc also lists some useful tips and tricks.

Because the kernel creates the contents of /proc files on the fly (as they are read),
most appear to be empty when listed with ls -l. You’ll have to cat or more the
contents to see what they actually contain. But be cautious—a few files contain or
link to binary data that can confuse your terminal emulator if viewed directly.

Process-specific information is divided into subdirectories named by PID. For ex-
ample, /proc/1 is always the directory that contains information about init. Table
5.7 lists the most useful per-process files.

Table 5.7 Process information files in Linux /proc (numbered subdirectories)

File Contents

cmd Command or program the process is executing
cmdline a Complete command line of the process (null-separated)
cwd Symbolic link to the process’s current directory
environ The process’s environment variables (null-separated)
exe Symbolic link to the file being executed
fd Subdirectory containing links for each open file descriptor
maps Memory mapping information (shared segments, libraries, etc.)
root Symbolic link to the process’s root directory (set with chroot)
stat General process status information (best decoded with ps)
statm Memory usage information

a. May be unavailable if the process is swapped out of memory.

From the Library of Wow! eBook .Com

136 Chapter 5 Controlling Processes

The individual components contained within the cmdline and environ files are
separated by null characters rather than newlines. You can filter their contents
through tr "\000" "\n" to make them more readable.

The fd subdirectory represents open files in the form of symbolic links. File de-
scriptors that are connected to pipes or network sockets don’t have an associated
filename. The kernel supplies a generic description as the link target instead.

The maps file can be useful for determining what libraries a program is linked to
or depends on.

Solaris and AIX also have a /proc filesystem, but it does not include the extra
status and statistical information found on Linux. A group of tools known collec-
tively as the proc utilities display some useful information about running pro-
cesses. For instance, the procsig command in AIX and its Solaris equivalent psig
print the signal actions and handlers for a given process. Table 5.8 shows the most
useful proc utilities and their functions.

HP-UX does not have a /proc filesystem or equivalent.

5.10 STRACE, TRUSS, AND TUSC: TRACE SIGNALS AND SYSTEM CALLS

It can sometimes be hard to figure out what a process is actually doing. You may
have to make educated guesses based on indirect data from the filesystem and
from tools such as ps.

Linux lets you directly observe a process with the strace command, which shows
every system call the process makes and every signal it receives. A similar com-
mand for Solaris and AIX is truss. The HP-UX equivalent is tusc; however, tusc
must be separately installed.

You can even attach strace or truss to a running process, snoop for a while, and
then detach from the process without disturbing it.9

Table 5.8 Commands for reading /proc information in AIX and Solaris

Solarisa AIX Description

pcred [pid | core] proccred [pid] Prints/sets real, effective, and saved UID/GID
pldd [-F] [pid | core] procldd [pid] Shows library dependencies (like ldd)
psig [pid] procsig [pid] Lists signal actions and handlers
pfiles [pid] procfiles [pid] Prints open files
pwdx [pid] procwdx [pid] Prints the current working directory
pwait [pid] procwait [pid] Waits for a process to exit

a. Some of the Solaris proc tools accept a core file as input. This is primarily a debugging tool.

9. Well, usually. strace can interrupt system calls. The monitored process must then be prepared to
restart them. This is a standard rule of UNIX software hygiene, but it’s not always observed.

From the Library of Wow! eBook .Com

strace, truss, and tusc: trace signals and system calls 137

Pr
oc
es
se
s

Although system calls occur at a relatively low level of abstraction, you can usually
tell quite a bit about a process’s activity from the output. For example, the follow-
ing log was produced by strace run against an active copy of top:

redhat$ sudo strace -p 5810
gettimeofday({1116193814, 213881}, {300, 0}) = 0
open("/proc", O_RDONLY|O_NONBLOCK|O_LARGEFILE|O_DIRECTORY) = 7
fstat64(7, {st_mode=S_IFDIR|0555, st_size=0, ...}) = 0
fcntl64(7, F_SETFD, FD_CLOEXEC) = 0
getdents64(7, /* 36 entries */, 1024) = 1016
getdents64(7, /* 39 entries */, 1024) = 1016
stat64("/proc/1", {st_mode=S_IFDIR|0555, st_size=0, ...}) = 0
open("/proc/1/stat", O_RDONLY) = 8
read(8, "1 (init) S 0 0 0 0 -1 4194560 73"..., 1023) = 191
close(8) = 0
…

Not only does strace show you the name of every system call made by the process,
but it also decodes the arguments and shows the result code the kernel returns.

strace is packed with goodies, most of which are documented in the man page.
For example, the -f flag follows forked processes, which is useful for tracing dae-
mons such as httpd that spawn many children. The -e file option displays only file
operations, a feature that’s especially handy for discovering the location of evasive
configuration files.

In this example, top starts by checking the current time. It then opens and stats
the /proc directory and reads the directory’s contents, thereby obtaining a list of
running processes. top goes on to stat the directory representing the init process
and then opens /proc/1/stat to read the init’s status information.

Here’s an even simpler example (the date command) using truss on Solaris:
solaris$ truss date
…
time() = 1242507670
brk(0x00024D30) = 0
brk(0x00026D30) = 0
open("/usr/share/lib/zoneinfo/US/Mountain", O_RDONLY) = 3
fstat64(3, 0xFFBFFAF0) = 0
read(3, " T Z i f\0\0\0\0\0\0\0\0".., 877) = 877
close(3) = 0
ioctl(1, TCGETA, 0xFFBFFA94) = 0
fstat64(1, 0xFFBFF9B0) = 0
write(1, " S a t M a y 1 6 1".., 29) = 29
Sat May 16 14:56:46 MDT 2009
_exit(0)

Here, after allocating memory and opening library dependencies (not shown),
date uses the time system call to read the system time, opens the appropriate time
zone file to determine the appropriate offset, and prints the date and time stamp
by calling the write system call.

From the Library of Wow! eBook .Com

138 Chapter 5 Controlling Processes

5.11 RUNAWAY PROCESSES

See page 1131 for more
information about
runaway processes.

Runaway processes come in two flavors: user processes that consume excessive
amounts of a system resource, such as CPU time or disk space, and system pro-
cesses that suddenly go berserk and exhibit wild behavior. The first type of run-
away is not necessarily malfunctioning; it might simply be a resource hog. System
processes are always supposed to behave reasonably.

You can identify processes that use excessive CPU time by looking at the output of
ps or top. If it’s obvious that a user process is consuming more CPU than is rea-
sonable, investigate the process. It can also be useful to look at the number of
processes waiting to run. Use the uptime command to show the load averages
(average numbers of runnable processes) over 1, 5, and 15-minute intervals.

There are two reasons to find out what a process is trying to do before tampering
with it. First, the process may be both legitimate and important. It’s unreasonable
to kill processes at random just because they happen to use a lot of CPU. Second,
the process may be malicious or destructive. In this case, you’ve got to know what
the process was doing (e.g., cracking passwords) so that you can fix the damage.

Processes that make excessive use of memory relative to the system’s physical
RAM can cause serious performance problems. You can check the memory size of
processes by using top. The VIRT column shows the total amount of virtual
memory allocated by each process, and the RES column shows the portion of that
memory that is currently mapped to specific memory pages (the “resident set”).
On Linux systems, applications that use the video card (such as the X server) get a
bad rap because video memory is included in the memory usage computations.

Both of these numbers can include shared resources such as libraries, and that
makes them potentially misleading. A more direct measure of process-specific
memory consumption is found in the DATA column, which is not shown by de-
fault. To add this column to top’s display, type the f key once top is running and
select DATA from the list. The DATA value indicates the amount of memory in
each process’s data and stack segments, so it’s relatively specific to individual pro-
cesses (modulo shared memory segments). Look for growth over time as well as
absolute size.

Runaway processes that produce output can fill up an entire filesystem, causing
numerous problems. When a filesystem fills up, lots of messages will be logged to
the console and attempts to write to the filesystem will produce error messages.

The first thing to do in this situation is to determine which filesystem is full and
which file is filling it up. The df -k command shows filesystem use. Look for a
filesystem that’s 100% or more full.10 Use the du command on the identified file-
system to find which directory is using the most space. Rinse and repeat with du

10. Most filesystem implementations reserve a portion (about 5%) of the storage space for “breathing
room,” but processes running as root can encroach on this space, resulting in a reported usage that is
greater than 100%.

From the Library of Wow! eBook .Com

Exercises 139

Pr
oc
es
se
s

until the large files are discovered. If you can’t determine which process is using
the file, try using the fuser and lsof commands (covered in detail on page 144) for
more information.

You may want to suspend all suspicious-looking processes until you find the one
that’s causing the problem, but remember to restart the innocents when you are
done. When you find the offending process, remove the files it was creating.
Sometimes it’s smart to compress the file with gzip and rename it in case it con-
tains useful or important data.

5.12 RECOMMENDED READING

BOVET, DANIEL P., AND MARCO CESATI. Understanding the Linux Kernel (3rd Edi-
tion). Sebastopol, CA: O’Reilly Media, 2006.

MCKUSICK, MARSHALL KIRK, AND GEORGE V. NEVILLE-NEIL. The Design and Im-
plementation of the FreeBSD Operating System. Reading, MA: Addison-Wesley
Professional, 2004.

5.13 EXERCISES

E5.1 Explain the relationship between a file’s UID and a running process’s
real UID and effective UID. Besides file access control, what is the pur-
pose of a process’s effective UID?

E5.2 Suppose that a user at your site has started a long-running process that
is consuming a significant fraction of a machine’s resources.

a) How would you recognize a process that is hogging resources?

b)Assume that the misbehaving process might be legitimate and
doesn’t deserve to die. Show the commands you would use to sus-
pend the process temporarily while you investigate.

c) Later, you discover that the process belongs to your boss and must
continue running. Show the commands you’d use to resume the task.

d)Alternatively, assume that the process needs to be killed. What signal
would you send, and why? What if you needed to guarantee that the
process died?

E5.3 Find a process with a memory leak (write your own program if you
don’t have one handy). Use ps or top to monitor the program’s memory
use as it runs.

E5.4 Write a simple Perl script that processes the output of ps to determine
the total VSZ and RSS of the processes running on the system. How do
these numbers relate to the system’s actual amount of physical memory
and swap space?

From the Library of Wow! eBook .Com

254

Chapter 31. background jobs

Table of Contents
31.1. background processes .. 255
31.2. practice : background processes ... 257
31.3. solution : background processes .. 258

background jobs

255

31.1. background processes

jobs
Stuff that runs in background of your current shell can be displayed with the jobs
command. By default you will not have any jobs running in background.

root@rhel53 ~# jobs
root@rhel53 ~#

This jobs command will be used several times in this section.

control-Z
Some processes can be suspended with the Ctrl-Z key combination. This sends
a SIGSTOP signal to the Linux kernel, effectively freezing the operation of the
process.

When doing this in vi(m), then vi(m) goes to the background. The background vi(m)
can be seen with the jobs command.

[paul@RHEL4a ~]$ vi procdemo.txt

[5]+ Stopped vim procdemo.txt
[paul@RHEL4a ~]$ jobs
[5]+ Stopped vim procdemo.txt

& ampersand
Processes that are started in background using the & character at the end of the
command line are also visible with the jobs command.

[paul@RHEL4a ~]$ find / > allfiles.txt 2> /dev/null &
[6] 5230
[paul@RHEL4a ~]$ jobs
[5]+ Stopped vim procdemo.txt
[6]- Running find / >allfiles.txt 2>/dev/null &
[paul@RHEL4a ~]$

jobs -p
An interesting option is jobs -p to see the process id of background processes.

[paul@RHEL4b ~]$ sleep 500 &

background jobs

256

[1] 4902
[paul@RHEL4b ~]$ sleep 400 &
[2] 4903
[paul@RHEL4b ~]$ jobs -p
4902
4903
[paul@RHEL4b ~]$ ps `jobs -p`
 PID TTY STAT TIME COMMAND
 4902 pts/0 S 0:00 sleep 500
 4903 pts/0 S 0:00 sleep 400
[paul@RHEL4b ~]$

fg
Running the fg command will bring a background job to the foreground. The number
of the background job to bring forward is the parameter of fg.

[paul@RHEL5 ~]$ jobs
[1] Running sleep 1000 &
[2]- Running sleep 1000 &
[3]+ Running sleep 2000 &
[paul@RHEL5 ~]$ fg 3
sleep 2000

bg
Jobs that are suspended in background can be started in background with bg. The
bg will send a SIGCONT signal.

Below an example of the sleep command (suspended with Ctrl-Z) being reactivated
in background with bg.

[paul@RHEL5 ~]$ jobs
[paul@RHEL5 ~]$ sleep 5000 &
[1] 6702
[paul@RHEL5 ~]$ sleep 3000

[2]+ Stopped sleep 3000
[paul@RHEL5 ~]$ jobs
[1]- Running sleep 5000 &
[2]+ Stopped sleep 3000
[paul@RHEL5 ~]$ bg 2
[2]+ sleep 3000 &
[paul@RHEL5 ~]$ jobs
[1]- Running sleep 5000 &
[2]+ Running sleep 3000 &
[paul@RHEL5 ~]$

background jobs

257

31.2. practice : background processes
1. Use the jobs command to verify whether you have any processes running in
background.

2. Use vi to create a little text file. Suspend vi in background.

3. Verify with jobs that vi is suspended in background.

4. Start find / > allfiles.txt 2>/dev/null in foreground. Suspend it in background
before it finishes.

5. Start two long sleep processes in background.

6. Display all jobs in background.

7. Use the kill command to suspend the last sleep process.

8. Continue the find process in background (make sure it runs again).

9. Put one of the sleep commands back in foreground.

10. (if time permits, a general review question...) Explain in detail where the numbers
come from in the next screenshot. When are the variables replaced by their value ?
By which shell ?

[paul@RHEL4b ~]$ echo $$ $PPID
4224 4223
[paul@RHEL4b ~]$ bash -c "echo $$ $PPID"
4224 4223
[paul@RHEL4b ~]$ bash -c 'echo $$ $PPID'
5059 4224
[paul@RHEL4b ~]$ bash -c `echo $$ $PPID`
4223: 4224: command not found

background jobs

258

31.3. solution : background processes
1. Use the jobs command to verify whether you have any processes running in
background.

jobs (maybe the catfun is still running?)

2. Use vi to create a little text file. Suspend vi in background.

vi text.txt
(inside vi press ctrl-z)

3. Verify with jobs that vi is suspended in background.

[paul@rhel53 ~]$ jobs
[1]+ Stopped vim text.txt

4. Start find / > allfiles.txt 2>/dev/null in foreground. Suspend it in background
before it finishes.

[paul@rhel53 ~]$ find / > allfiles.txt 2>/dev/null
 (press ctrl-z)
[2]+ Stopped find / > allfiles.txt 2> /dev/null

5. Start two long sleep processes in background.

sleep 4000 & ; sleep 5000 &

6. Display all jobs in background.

[paul@rhel53 ~]$ jobs
[1]- Stopped vim text.txt
[2]+ Stopped find / > allfiles.txt 2> /dev/null
[3] Running sleep 4000 &
[4] Running sleep 5000 &

7. Use the kill command to suspend the last sleep process.

[paul@rhel53 ~]$ kill -SIGSTOP 4519
[paul@rhel53 ~]$ jobs
[1] Stopped vim text.txt
[2]- Stopped find / > allfiles.txt 2> /dev/null
[3] Running sleep 4000 &
[4]+ Stopped sleep 5000

8. Continue the find process in background (make sure it runs again).

bg 2 (verify the job-id in your jobs list)

9. Put one of the sleep commands back in foreground.

fg 3 (again verify your job-id)

10. (if time permits, a general review question...) Explain in detail where the numbers
come from in the next screenshot. When are the variables replaced by their value ?
By which shell ?

background jobs

259

[paul@RHEL4b ~]$ echo $$ $PPID
4224 4223
[paul@RHEL4b ~]$ bash -c "echo $$ $PPID"
4224 4223
[paul@RHEL4b ~]$ bash -c 'echo $$ $PPID'
5059 4224
[paul@RHEL4b ~]$ bash -c `echo $$ $PPID`
4223: 4224: command not found

The current bash shell will replace the $$ and $PPID while scanning the line, and
before executing the echo command.

[paul@RHEL4b ~]$ echo $$ $PPID
4224 4223

The variables are now double quoted, but the current bash shell will replace $$ and
$PPID while scanning the line, and before executing the bach -c command.

[paul@RHEL4b ~]$ bash -c "echo $$ $PPID"
4224 4223

The variables are now single quoted. The current bash shell will not replace the $$
and the $PPID. The bash -c command will be executed before the variables replaced
with their value. This latter bash is the one replacing the $$ and $PPID with their
value.

[paul@RHEL4b ~]$ bash -c 'echo $$ $PPID'
5059 4224

With backticks the shell will still replace both variable before the embedded echo is
executed. The result of this echo is the two process id's. These are given as commands
to bash -c. But two numbers are not commands!

[paul@RHEL4b ~]$ bash -c `echo $$ $PPID`
4223: 4224: command not found

	2_cas_procesi
	2_cas_procesi2
	2_cas_fileaccess
	2_cas_emacs
	2_cas_bash

