Elektrotehnicki fakultet u Beogradu
Katedra za ra¢unarsku tehniku 1 informatiku

Predmet: Operativni sistemi 2 (13E1130S2, 13S1130S2)

Nastavnik: prof. dr Dragan Milicev

Asistent: Zivojin Sustran

Skolska godina: 2025/2026. (Zadatak vazi po¢ev od prvog roka u 2026. god.)

Projekat za domaci rad
. Projektni zadatak —

Verzija dokumenta: 1.0

Vazne napomene: Pre ¢itanja ovog teksta, obavezno procitati opsSta pravila predmeta i pravila
vezana za izradu domadih zadataka! Procitati potom ovaj tekst u celini i paZljivo, pre
zapocinjanja realizacije ili trazenja pomoci. Ukoliko u zadatku nesto nije dovoljno precizno
definisano ili su postavljeni kontradiktorni zahtevi, student treba da uvede razumne
pretpostavke, da ih temeljno obrazlozi i da nastavi da izgraduje preostali deo svog reSenja na
temeljima uvedenih pretpostavki. Zahtevi su namerno nedovoljno detaljni, jer se od studenata
oc¢ekuje kreativnost i profesionalni pristup u reSavanju prakticnih problema!

1/10

Uvod

Cilj ovog zadatka jeste implementacija upros¢enog Skolskog sistema za alokaciju memorije.
Sistem za alokaciju memorije treba da obezbedi alokaciju i dealokaciju memorije na nivou
jezgra operativnog sistema. Na nivou jezgra treba obezbediti da se alokacija i dealokacija
podataka samog jezgra radi brzo 1 kompaktno, koriS¢enjem sistema ploca (engl. slab) i sistema
parnjaka (engl. buddy).

Zadatak se sastoji od dva dela. Prvi deo je obavezan 1 za uspeSnu odbranu projektnog zadatka

student mora da ga uradi. Svi algoritmi i optimizacije se ostavljaju u nadleznosti samog reSenja
1 bi¢e razmatrani samo u okviru testiranja performansi sistema.

2/10

OpSti zahtevi

Odnos projekta i korisnicke aplikacije

TraZene podsisteme treba realizovati na jeziku C. Korisni¢ku aplikaciju, koja sadrzi test
primere, prevesti nezavisno u konzolni program. U datoj aplikaciji bi¢e prisutna i funkcija main.
Korisnicka aplikacija ¢e napraviti odredeni broj procesa koris¢enjem sistemskog poziva fork.
Korisnicka aplikacija pristupa uslugama operativnog sistema jedino putem sistemskih poziva.

Odnos projekta i ostatka operativnog sistema

Dat je operativni sistem xv6! (prilagoden programski kod se nalazi na sajtu predmeta). Zadatak
studenta je da izmeni deo operativnog sistem xv6 tako da podrzi alokator koji je opisan u ovom
projektu. Izradom projekta se ni na koji nacin ne sme ugroziti ispravno funkcionisanje ostalih
delova operativnog sistema. Svaki eventualni problem koji se pojavi po pokretanju projekta
bi¢e smatran kao greSka pri izradi projekta. Deo koda koji je obezbeden u okviru postavke
projekta je pazljivo napisan, i ukoliko se koristi u skladu sa uputstvom za rad, ne moze
prouzrokovati nikakve probleme i greske pri izvrSavanju. Dati kod dozvoljeno je menjati u onoj
meri koja je potrebna za realizaciju traZzenih zahteva, ali nikako uklanjanjem ve¢ postojecih
funkcionalnosti i menjanjem postojecih sistemskih poziva.

Razvojno okruZenje

Xv6 operativni sistem se izvrSava na emulatoru u okviru operativnog sistema domacina (Linux
x64). Virtuelna masina sa instaliranim operativnim sistemom domacinom, emulatorom i svim
potrebnim alatima za prevodenje je data na sajtu predmeta. Ista ta virtuelna masina ¢e biti
koriS¢ena 1 na odbrani projekta. Predvideno razvojno okruzenje je CLion (studenti mogu
nabaviti akademsku licencu na sajtu proizvodaca sa studentskim email nalogom). Uputstvo za
podesavanje projekta i testiranja je dato na sajtu predmeta. S obzirom da se razvija kernel
operativnog sistema standardna biblioteka C jezika nije dostupna. Dovoljno je koristi sistem sa
jednim procesorom.

! Detaljan opis xv6 operativnog sistema se moZe naci u knjizi na adresi (pristupljeno: 15.12.2025. godine)
https://pdos.csail.mit.edu/6.1810/2024/xv6/book-riscv-rev4.pdf

3/10

Prvi deo (20 poena)

Uvod

Za alokaciju podataka jezgro operativnog sistema koristi alokator pod nazivom sistem ploca
(engl. slab allocator) koji ¢e biti implementiran u okviru ovog projekta. Na pocetku rada
alokatoru ¢e biti dodeljen kontinualan memorijski prostor koji ¢e alokator kontrolisati. Alokator
ima sledece ciljeve:

e alokacija malih memorijskih bafera sa ciljem da se smanji interna fragmentacija;

e kesiranje Cesto koriS¢enih objekata sa ciljem da se izbegne alokacija, inicijalizacija i

unistavanje objekata;

Prvi cilj treba da se postigne odrzavanjem jednog skupa keSeva za alociranje malih
memorijskih bafera ¢ija je moguca veli¢ina izmedu 2° i 2!7 bajtova. Ovi keSevi se nazivaju size-
N, gde je N veli¢ina potrebnog prostora za jedan bafer. Veli¢ina malog memorijskog bafera (u
bajtovima) moze biti jednaka samo stepenu dvojke.

Drugi cilj se postize odrzavanjem keSeva cesto koriS¢enih objekata. Kada se nova ploca
kreira, odredeni broj objekata jezgra se alocira u njemu. Objekti se inicijalizuju ako postoji
konstruktor za njih. Kada se objekat oslobodi, ostavlja se u inicijalizovanom stanju da moze da
bude ponovo upotrebljen.

Alokator treba da obezbedi interfejs za kreiranje, unistavanje i smanjenje keseva, kao i
interfejs za alokaciju/dealokaciju objekata i malih memorijskih bafera. Za potrebe testiranja
alokator treba da obezbedi i interfejs za Stampanje informacija o keSevima. Alokator treba
automatski da prosiruje veli¢inu kesa kada je to potrebno.

Prilikom startovanja sistema alokatoru se dodeljuje prostor koji treba da kontrolise. Ploce
treba da budu velic¢ine 2" kontinualnih blokova. Za vodenje evidencije o slobodnim i zauzetim
blokovima koristiti sistem parnjaka (engl. buddy allocator). Alokatori smeju da koriste samo
dodeljenu memoriju za ¢uvanje svojih podataka, drugim re¢ima ne sme da dinamcki alociraju
memoriju koriS¢enjem usluga samog jezika i operativnog sistema domacina (malloc, new itd.).

Sistem ploca

Opis kesa

Za potrebe alociranja se koriste keSevi za objekte svih vrsta i male memorijske bafere. KeSevi
treba da budu ulancani u listu. Jedan kes sadrzi informacije o plo¢ama za jednu vrstu objekata
ili za male memorijske bafere. Kes treba da ¢uva tri liste ploca, jednu za slobodne ploce, jednu
za pune ploce i jednu za sve ploce koje imaju mesta a nisu potpuno prazne. ProSirenje kesa se
radi automatski kad su sve plo¢e popunjene. Smanjivanje jednog kesa se radi tako $to se prazne
ploc¢e uklone, pod uslovom da od prethodnog smanjivanja nije bilo potrebe da se broj ploca
poveca. Alokacija jednog malog memorijskog bafera implicitno kreira kes§ za tu vrstu malih
memorijskih bafera.

Informacije koje se Stampaju za jedan ke§ su ime, veli¢ina jednog podatka izraZena u
bajtovima, veli¢ina celog kesa izrazenog u broju blokova, broj plo¢a, broj objekata u jednoj
plo¢i i procentualna popunjenost kesa.

Operacije koje za kes treba da se obezbede su:

e inicijalizacija alokatora; prosleduje se adresa pocetka memorijsko prostora za koji je

alokator zaduZen i veli¢ina tog memorijskog prostora izraZena u broju blokova;

4/10

e kreiranje jednog keSa; pri kreiranju se zadaje naziv keSa, veli¢ina objekta, i opcioni
konstruktor i destruktor objekata; povratna vrednost je pokaziva¢ na rucku kesa; NULL
vrednost moze da se prosledi umesto konstruktora i destruktora;

smanjivanje jednog kesSa; povratna vrednost je broj blokova koji je osloboden;

brisanje jednog kesa;

alokaciju jednog objekta;

dealokaciju jednog objekta;

alokacija jednog malog memorijskog bafera;

dealokacija jednog malog memorijskog bafera;

Stampanje informacije o kesu;

Stampanje greSke prilikom rada sa keSom; povratna vrednost funkcije je 0 ukoliko
greske nije bilo, u suprotnom vrednost razlicita od 0.

Sve date operacije se pozivaju iskljucivo u sistemskom modu rada procesora.

Sve date operacije su thread-safe, $to znaci da se potpuno bezbedno mogu pozivati iz
konkurentnih niti. Sinhronizaciju smanjiti na minimum. Implementacija rucke za pristup kesu
se ostavlja u nadleznost samog reSenja.

Kes na jeziku C

Interfejs za pristup keSevima, zajedno sa potrebnim tipovima i podacima, dat je u fajlu s1ab.h.

// File: slab.h

typedef struct kmem cache s kmem cache t;

#define BLOCK SIZE (4096)
typedef unsigned long size t;

void kmem init (void *space, int block num);
kmem cache t *kmem cache create(const char *name, size t size,

void (*ctor) (void *),

void (*dtor) (void *)); // Allocate cache
int kmem cache_shrink(kmem cache t *cachep); // Shrink cache
void *kmem_cache_alloc (kmem_cache t *cachep); // Allocate one object from cache
void kmem cache free(kmem cache t *cachep, void *objp); // Deallocate one object from cache
void *kmalloc(size_t size); // Alloacate one small memory buffer
void kfree(const void *objp); // Deallocate one small memory buffer
void kmem cache destroy(kmem cache t *cachep); // Deallocate cache
void kmem cache info(kmem cache t *cachep); // Print cache info
int kmem cache_error (kmem cache_t *cachep); // Print error message

5/10

Sistem parnjaka

Opis zadatka

Sistem parnjaka se koristi samo u prilozenom resenju. Drugim, re¢ima nije potrebno obezbediti
interfejs za koriS¢enje sistema parnjaka van samog reSenja. Implementacija sistema parnjaka se
ostavlja u potpunosti u nadleznost samog resenja.

6/10

Drugi deo (10 poena)

Uvod

Alokator je potrebno koristiti u ve¢ postoje¢im podsistemima operativnog sistema. Za svaki
objekat koji pravi kernel potrebno je koristiti keSeve objekata. Odrzavanje keSeva objekata
(kreiranje, smanjivanje, uniStavanje) je potrebno raditi na odgovaraju¢im mestima u kernelu 1
to potpada pod nadleznost samog reSenja. Za nizove koje alocira kernel (npr. bafer za
prihvatanje podataka sa tastature) potrebno je koristiti alokaciju malih memorijskih bafera. U
kernelu nije dozvoljeno da se niSta osim skalarnih podataka (npr. pokazivac, integer, itd.)
alocira staticki, bez kori§¢enja implementiranog alokatora.

7/10

Testovi

Javni testovi

Testiranje moze da se radi na dva nacina. Prvi je eksplicitno testiranje i on je potreban za prvi
deo zadatka. Potrebno obezbedi sistemske pozive za API alokatora. Korisni¢ki proces tom
prilikom moze da poziva funkcije alokatora (podrazumeva se i init funkciju). Tom prilikom
korisnicka aplikacija ¢e direktno pozivati funkcije koje se implementiraju. Drugi nacin je
implicitno i on je potreban za drugi deo zadatka. Korisnicka aplikacija nece pozivati sistemske
pozive sluze za pristup alokatoru, ve¢ samo ostale sistemske pozive. Na proizvoljan nacin
omoguciti oba nacina testiranja. Za prvi nacin je dostupna aplikacija kao javni test na sajtu, dok
za drugi nacin su sve aplikacije dostupne u operativnom sistemu.

Tajni testovi

Tajni testovi detaljnije testiraju sve zahtevane funkcionalnosti u razli¢itim regularnim i
neregularnim situacijama (greske u pozivu ili radu), i nisu unapred dostupni studentima.
Testovi performansi

Testovi performansi mere vreme izvrSavanja procesa i efikasnost u koris¢enju resursa. Ovi
testovi nisu obavezni, i mogu, ali ne moraju, doneti dodatne bodove u predroku posle nastave
za do 20 najboljih odbranjenih radova. Ceni se i dodatne funkcionalnosti, optimizacije i slicno
koje nisu trazene datom postavkom.

8/10

Zakljucak

Potrebno je realizovati opisane podsisteme prema datim zahtevima na jeziku C. Testiranje se
vr$i u laboratorijama katedre na raCunarima pod operativnim sistemom Windows 11 x64.
Virtuelna masina sa sajta predmeta bic¢e dostupna za vreme odbrane.

Pravila za predaju projekta

Projekat se predaje iskljucivo kao jedna zip arhiva. U arhivu smestiti samo fajlove sa kodom
(.c, .cpp, .h 1 sli¢ne) koji su rezultat izrade projekta. Opisani sadrzaj ujedno treba da bude 1
jedini sadrzaj arhive. Arhiva ne sme sadrzati ni izvrSne fajlove, ni biblioteke, ni bilo kakve
testove, niti bilo Sta Sto iznad nije opisano, pogotovu ne sme sadrzati repozitorijum koda.
Projekat je moguce predati vise puta, ali do trenutka koji ¢e preko imejl liste biti objavljen za
svaki ispitni rok i koji ¢e uvek biti pre ispita, po pravilu prvi radni dan pre ispita. Na serveru
uvek ostaje samo poslednja predata verzija i ona ¢e se koristiti na odbrani. Za izlazak na ispit
neophodno je predati projekat (prijava ispita i poloZeni kolokvijumi su takode preduslovi za
izlazak na ispit). Nakon isteka roka za predaju, projektni zadaci se briSu sa servera, pa je u
slu¢aju ponovnog izlaska na ispit potrebno ponovo postaviti azurnu verziju projektnog
zadataka.

Sajt za predaju projekta je https://rti.etf.bg.ac.rs/domaci/index.php?servis=0s2_projekat

9/10

Zapisnik revizija

Ovaj zapisnik sadrzi spisak izmena i dopuna ovog dokumenta po verzijama.

Verzija 1.0

Strana Izmena

10/10

