

1/5

Elektrotehnički fakultet u Beogradu
Katedra za računarsku tehniku i informatiku

Predmet: Operativni sistemi 2
Nastavnik: prof. dr Dragan Milićev
Odsek: Softversko inženjerstvo, Računarska tehnika i informatika
Kolokvijum: Drugi, januar 2026.
Datum: 17. 1. 2026.

Drugi kolokvijum iz Operativnih sistema 2

Kandidat: ___

Broj indeksa: ________________ E-mail:______________________________________

Kolokvijum traje 90 minuta. Dozvoljeno je korišćenje literature.

Zadatak 1 _______________/10 Zadatak 3 _______________/10
Zadatak 2 _______________/10

Ukupno: __________/30 = __________%

Napomena: Ukoliko u zadatku nešto nije dovoljno precizno definisano, student treba da
uvede razumnu pretpostavku, da je uokviri (da bi se lakše prepoznala prilikom ocenjivanja) i
da nastavi da izgrađuje preostali deo svog odgovora na temeljima uvedene pretpostavke.
Ocenjivanje unutar potpitanja je po sistemu "sve ili ništa", odnosno nema parcijalnih poena.
Kod pitanja koja imaju ponuđene odgovore treba samo zaokružiti jedan odgovor. Na ostala
pitanja odgovarati čitko, kratko i precizno.

2/5

1. (10 poena) Mrtva blokada
Neki konkurentan program sastoji se od uporednih procesa koji poseduju ugnežđene kritične
sekcije zaštićene blokirajućim međusobnim isključenjem kao što je simbolički prikazano dole.
Za taj program moguće je izvršiti statičku analizu korišćenja kritičnih sekcija. Rezultat takve
analize je struktura podataka oblika šume stabala, kakva je data dole za ovaj primer. Pronaći i
precizno objasniti sve scenarije ulaska u mrtvu blokadu ovog programa i prikazati grafove
zauzeća resursa za te situacije.

 process P1 {
 mutex A {
 mutex B {
 mutex C {}
 }
 }
 mutex D {}
 }

 process P2 {
 mutex C {
 mutex D {}
 mutex E {}
 }
 mutex B {}
 }

 process P3 {
 mutex A {}
 mutex D {
 mutex A {
 mutex E {}
 }
 }
 }

Rešenje:

!"

#

A

B

C

!D

B

C

A

!E

#

#

)

C

)

3/5

2. (10 poena) Upravljanje memorijom
Dat je fajl čiji je sadržaj binaran i sastoji se od sledećeg. Na početku sadržaja fajla je zapisan
jedan broj tipa unsigned koji predstavlja „ključ“. Odmah iza toga zapisan je niz struktura tipa
Node u istom binarnom formatu u kom se predstavljaju i u memoriji; veličina ovog niza
sigurno nije veća od MAX_ARRAY_SIZE. U tom nizu zapisani su čvorovi binarnog indeksnog
stabla. Koren tog stabla je u indeksu 0 tog niza. Svaki čvor u polju lchild strukture Node
sadrži indeks čvora levog deteta, a u polji rchild indeks čvora desnog deteta; u polju val je
vrednost pridružena čvoru. U levom podstablu datog čvora čvorovi sadrže manje, a u
čvorovima desnog podstablu veće vrednosti od one pridružene datom čvoru.
Korišćenjem tehnike memorijski preslikanih fajlova, napisati program koji se poziva sa
jednim argumentom, nazivom fajla čiji je sadržaj u opisanom formatu, i koji treba da pronađe
dati zapisani ključ u datom zapisanom indeksnom stablu i na stadardni izlaz ispiše poruku o
tome da li je vrednost pronađena ili nije. Na raspolaganju su sledeći POSIX sistemski pozivi
sa izvodom iz dokumentacije:
#include <fcntl.h>
int open (const char *pathname, int flags);
int close(int fd);

The open() system call opens the file specified by pathname. If the specified file does not exist, it may optionally
(if O_CREAT is specified in flags) be created by open().
The return value of open() is a file descriptor, a small, nonnegative integer that is used in subsequent system
calls to refer to the open file. The file descriptor returned by a successful call will be the lowest-numbered file
descriptor not currently open for the process.
The argument flags must include one of the following access modes: O_RDONLY, O_WRONLY, or O_RDWR.
These request opening the file read-only, write-only, or read/write, respectively.
open() returns the new file descriptor, or -1 if an error occurred.
#include <sys/mman.h>
void *mmap(void *addr, size_t length, int prot, int flags, int fd, off_t
offset);
int munmap(void *addr, size_t length);

mmap() creates a new mapping in the virtual address space of the calling process. The starting address for the
new mapping is specified in addr. The length argument specifies the length of the mapping (which must be
greater than 0).
If addr is NULL, then the kernel chooses the (page-aligned) address at which to create the mapping; this is the
most portable method of creating a new mapping. If addr is not NULL, then the kernel takes it as a hint about
where to place the mapping[...] The address of the new mapping is returned as the result of the call.
The contents of a file mapping are initialized using length bytes starting at offset offset in the file (or other
object) referred to by the file descriptor fd. offset must be a multiple of the page size as returned by
sysconf(_SC_PAGE_SIZE).
After the mmap() call has returned, the file descriptor, fd, can be closed immediately without invalidating the
mapping.
The prot argument describes the desired memory protection of the mapping (and must not conflict with the open
mode of the file). It is either PROT_NONE or the bitwise OR of one or more of the following flags:
 PROT_EXEC Pages may be executed.
 PROT_READ Pages may be read.
 PROT_WRITE Pages may be written.
 PROT_NONE Pages may not be accessed.
On success, mmap() returns a pointer to the mapped area. On error, the value MAP_FAILED (that is, (void
*)-1) is returned.
The munmap() system call deletes the mappings for the specified address range, and causes further references to
addresses within the range to generate invalid memory references. The region is also automatically unmapped
when the process is terminated. On the other hand, closing the file descriptor does not unmap the region.
Izostvaljajući detalje, argument flags u pozivu mmap() treba postaviti na MAP_SHARED.

Rešenje:

4/5

5/5

3. (10 poena) Upravljanje memorijom
Posmatra se neki alokator memorije za potrebe jezgra na principu „parnjaka“ (buddy).
Najmanja jedinica alokacije je stranica, a ukupna raspoloživa memorija kojom može da
upravlja alokator ima 2N-1 stranica koji su označeni brojevima 0..2N-1-1, gde je N predefinisana
konstanta. Za potrebe evidencije slobodnih komada memorije, alokator vodi strukturu čija je
deklaracija:
const int N = …;
struct buddy_t {
 uint64_t array_size;
 int64_t buddy[N];
};
Svaki ulaz i (i=0..N-1) niza buddy sadrži glavu liste slobodnih komada memorije veličine 2i
susednih stranica. Glava liste sadrži broj prve stranice u slobodnom komadu, a broj naredne
stranice u listi je upisan na početku svake slobodne stranice u listi (-1 za kraj liste). Polje
array_size sadrži broj ulaza u nizu buddy koji se koriste.

Veličine virtuelne adrese je 64 bita. Stranice kojima može da upravlja alokator su u najvišem
delu adresnog prostora. Veličina stranice je 4KB. Implementirati funkcije get_page_address
i increase_memory. Prva funkcija na osnovu broja stranice u alokatoru vraća pokazivač na
početak te stranice, dok druga funkcija duplira veličinu prostora kojom upravlja alokator. Pre
poziva funkcije increase_memory, nove stranice kojima će upravljati alokator su već prisutne
u adresnom prostoru. Tražene funkcije treba da vrate kod greške u slučaju da tražene operacije
ne mogu da se izvrše. Na počeku rada sistema alokator nema ni jednu stranicu kojom upravlja
i svako proširenje prostora kojim upravlja alokator se radi pomoću tražene funkcije
increase_memory.

Deklaracije traženih funkcija su:
void* get_page_address(struct buddy_t buddy, uint64_t page_num);
int increase_memory(struct buddy_t buddy);

Rešenje:

