Elektrotehnicki fakultet u Beogradu
Katedra za ra¢unarsku tehniku 1 informatiku

Predmet: Operativni sistemi 2

Nastavnik: prof. dr Dragan Milic¢ev

Odsek: Softversko inZenjerstvo, Racunarska tehnika 1 informatika
Kolokvijum: Drugi, januar 2026.

Datum: 17. 1. 2026.

Drugi kolokvijum iz Operativnih sistema 2

Kandidat:

Broj indeksa: E-mail:

Kolokvijum traje 90 minuta. Dozvoljeno je koriscenje literature.

Zadatak 1 /10 Zadatak 3 /10
Zadatak 2 /10

Ukupno: /30 = %

Napomena: Ukoliko u zadatku neSto nije dovoljno precizno definisano, student treba da
uvede razumnu pretpostavku, da je uokviri (da bi se lakSe prepoznala prilikom ocenjivanja) i
da nastavi da izgraduje preostali deo svog odgovora na temeljima uvedene pretpostavke.
Ocenjivanje unutar potpitanja je po sistemu "sve ili nista", odnosno nema parcijalnih poena.
Kod pitanja koja imaju ponudene odgovore treba samo zaokruziti jedan odgovor. Na ostala
pitanja odgovarati ¢itko, kratko i precizno.

1/5

1. (10 poena) Mrtva blokada

Neki konkurentan program sastoji se od uporednih procesa koji poseduju ugnezdene kriticne
sekcije zasticene blokiraju¢im medusobnim isklju¢enjem kao $to je simbolicki prikazano dole.
Za taj program moguce je izvrsiti staticku analizu koriS¢enja kriticnih sekcija. Rezultat takve
analize je struktura podataka oblika Sume stabala, kakva je data dole za ovaj primer. Prona¢i i
precizno objasniti sve scenarije ulaska u mrtvu blokadu ovog programa i prikazati grafove
zauzeca resursa za te situacije.

process Pl {
mutex A {
mutex B {
mutex C {}
}
}
mutex D {}

}

process P2 {
mutex C {
mutex D {}
mutex E {}
}
mutex B {}

}

process P3 {
mutex A {}
mutex D {
mutex A {
mutex E {}
}
}
}

Resenje:

2/5

2. (10 poena) Upravljanje memorijom

Dat je fajl ¢iji je sadrzaj binaran i sastoji se od slede¢eg. Na pocetku sadrzaja fajla je zapisan
jedan broj tipa unsigned koji predstavlja ,.kljuc*. Odmah iza toga zapisan je niz struktura tipa
Node u istom binarnom formatu u kom se predstavljaju i u memoriji; veli¢ina ovog niza
sigurno nije veca od MaX ARRAY sI1zE. U tom nizu zapisani su ¢vorovi binarnog indeksnog
stabla. Koren tog stabla je u indeksu 0 tog niza. Svaki ¢vor u polju 1child strukture Node
sadrzi indeks ¢vora levog deteta, a u polji rchild indeks ¢vora desnog deteta; u polju val je
vrednost pridruzena ¢voru. U levom podstablu datog ¢vora ¢vorovi sadrze manje, a u
¢vorovima desnog podstablu vece vrednosti od one pridruzene datom ¢voru.

Kori$¢enjem tehnike memorijski preslikanih fajlova, napisati program koji se poziva sa

jednim argumentom, nazivom fajla ¢iji je sadrzaj u opisanom formatu, i koji treba da pronade
dati zapisani klju¢ u datom zapisanom indeksnom stablu i na stadardni izlaz ispiSe poruku o
tome da li je vrednost pronadena ili nije. Na raspolaganju su slede¢i POSIX sistemski pozivi
sa izvodom iz dokumentacije:

#include <fcntl.h>
int open (const char *pathname, int flags);
int close (int fd);

The open() system call opens the file specified by pathname. If the specified file does not exist, it may optionally
(if O_CREAT is specified in flags) be created by open().

The return value of open() is a file descriptor, a small, nonnegative integer that is used in subsequent system
calls to refer to the open file. The file descriptor returned by a successful call will be the lowest-numbered file
descriptor not currently open for the process.

The argument flags must include one of the following access modes: O RDONLY, O WRONLY, or O RDWR.
These request opening the file read-only, write-only, or read/write, respectively.

open() returns the new file descriptor, or -1 if an error occurred.

#include <sys/mman.h>

void *mmap (void *addr, size t length, int prot, int flags, int fd, off t
offset);

int munmap (void *addr, size t length);

mmap() creates a new mapping in the virtual address space of the calling process. The starting address for the
new mapping is specified in addr. The length argument specifies the length of the mapping (which must be
greater than ().
If addr is NULL, then the kernel chooses the (page-aligned) address at which to create the mapping; this is the
most portable method of creating a new mapping. If addr is not NULL, then the kernel takes it as a hint about
where to place the mapping|...] The address of the new mapping is returned as the result of the call.
The contents of a file mapping are initialized using length bytes starting at offset offset in the file (or other
object) referred to by the file descriptor fd. offset must be a multiple of the page size as returned by
sysconf(SC_PAGE_SIZE).
After the mmap() call has returned, the file descriptor, fd, can be closed immediately without invalidating the
mapping.
The prot argument describes the desired memory protection of the mapping (and must not conflict with the open
mode of the file). 1t is either PROT_NONE or the bitwise OR of one or more of the following flags:

PROT EXEC Pages may be executed.

PROT READ Pages may be read.

PROT_ WRITE Pages may be written.

PROT NONE Pages may not be accessed.
On success, mmap() returns a pointer to the mapped area. On error, the value MAP_FAILED (that is, (void
*)-1) is returned.
The munmap() system call deletes the mappings for the specified address range, and causes further references to
addresses within the range to generate invalid memory references. The region is also automatically unmapped
when the process is terminated. On the other hand, closing the file descriptor does not unmap the region.

Izostvaljajuéi detalje, argument flags u pozivu mmap() treba postaviti na MAP_SHARED.

Resenje:

3/5

4/5

3. (10 poena) Upravljanje memorijom

Posmatra se neki alokator memorije za potrebe jezgra na principu ,parnjaka“ (buddy).
Najmanja jedinica alokacije je stranica, a ukupna raspoloziva memorija kojom moze da
upravlja alokator ima 2"! stranica koji su oznaceni brojevima 0..2""1-1, gde je N predefinisana
konstanta. Za potrebe evidencije slobodnih komada memorije, alokator vodi strukturu ¢ija je

deklaracija:
const int N = ..;
struct buddy t {
uint64 t array size;
int64_t buddy[N];
bi
Svaki ulaz i (i=0..N-1) niza buddy sadrZi glavu liste slobodnih komada memorije veli¢ine 2
susednih stranica. Glava liste sadrzi broj prve stranice u slobodnom komadu, a broj naredne
stranice u listi je upisan na pocetku svake slobodne stranice u listi (-1 za kraj liste). Polje

array size sadrzi broj ulaza u nizu buddy koji se koriste.

Veli¢ine virtuelne adrese je 64 bita. Stranice kojima moze da upravlja alokator su u najvisem
delu adresnog prostora. Veli¢ina stranice je 4KB. Implementirati funkcije get page address
1 increase memory. Prva funkcija na osnovu broja stranice u alokatoru vrac¢a pokaziva¢ na
pocetak te stranice, dok druga funkcija duplira veli¢inu prostora kojom upravlja alokator. Pre
poziva funkcije increase memory, nove stranice kojima ¢e upravljati alokator su ve¢ prisutne
u adresnom prostoru. Trazene funkcije treba da vrate kod greske u slucaju da trazene operacije
ne mogu da se izvrSe. Na poceku rada sistema alokator nema ni jednu stranicu kojom upravlja
i svako proSirenje prostora kojim upravlja alokator se radi pomocu traZzene funkcije

increase memory.

Deklaracije trazenih funkcija su:

void* get page address(struct buddy t buddy, uint64 t page num);
int increase memory (struct buddy t buddy):;

Resenje:

5/5

