ReSenja drugog kolokvijuma iz
Operativnih sistema 2, januar 2026.

1. (10 poena) Za objaSnjenje oznaka i algoritma koji analizira sve moguénosti i pronalazi
situacije sa mrtvom blokadom pogledati reSenje zadatka sa Drugog kolokvijuma iz januara
2020. godine. Za datu Sumu stabala, podstaze koje se uzimaju u obzir su sledece:

P1: {A-B, A-B-C}; P2: {C-D, C-E}; P3: {D-A, D-A-E}

Sve njihove kombinacije i znaCenje tih kombinacija dati su u sledecoj tabeli.

Kombinacija staza zauzeéa resursa |Ishod

P1: A-B; P2: C-D; P3: D-A Nema mrtve blokade

P1: A-B; P2: C-D; P3: D-A-E Nemoguca (A zauzela dva procesa)
P1: A-B; P2: C-E; P3: D-A Nema mrtve blokade

P1: A-B; P2: C-E; P3: D-A-E Nemoguca (A zauzela dva procesa)
P1: A-B-C; P2: C-D; P3: D-A Mrtva blokada

P1: A-B-C; P2: C-D; P3: D-A-E Nemoguca (A zauzela dva procesa)
P1: A-B-C; P2: C-E; P3: D-A Nema mrtve blokade

P1: A-B-C; P2: C-E; P3: D-A-E Nemoguca (A zauzela dva procesa)

Prema tome, jedina kombinacija staza koja dovodi do mrtve blokade je: P1: A-B-C, P2: C-D,
P3: D-A, a graf zauzeca izgleda ovako i poseduje petlju A-P1-C-P2-D-P3-A:

1/3

2. (10 poena)

#include <fcntl.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/mman.h>

inline void handle err (const char* msg) {
fprintf (stderr, "Error: %s", msg); exit(-1);

}

struct Node {

unsigned val;

size t 1lchild, rchild;
b

const size t MAX ARRAY SIZE = ...;
const size t MEM SIZE = (MAX ARRAY SIZE)*sizeof (Node) + sizeof (unsigned);

bool find (Node arr[], unsigned key) {
Node* node = arr;
while (node) {
if (node->val==key) return true;
if (node->val>key) node = node->1child ? &arr[node->1child] : nullptr;
if (node->val<key) node node->rchild ? &arr[node->rchild] : nullptr;

}

return false;

}

int main (int argc, char* argv[]) {
if (argc != 2) handle err ("Expecting one argument for the file.");

fd = open(argv[1l], O RDONLY) ;
if (fd == -1) handle err("Cannot open file.");

void* addr = mmap (NULL, MEM SIZE, PROT READ, MAP SHARED, fd, 0);

if (addr == MAP FAILED) handle err ("Cannot map file.");
unsigned key = * (unsigned*)addr;
Node* root = (Node*) ((unsigned*)addr+1l);

bool found = find(root, key);
printf (found?"Found.\n":"Not found.\n");

munmap (addr,MEM SIZE) ;
close (fd) ;

exit (0) ;
}
3. (10 poena)
#include <stdint.h>
const int N = 6;

struct buddy t {

uint64 t array size;

int64 t buddy[N];
}i
const uint64 t PAGE SIZE WIDTH = 12;
const uint64 t VA SIZE WIDTH = 64;
const uint64 t ONE = 1;

2/3

const uint64_t START_PAGE = (ONE << VA_SIZE_WIDTH - PAGE_SIZE_WIDTH) - (ONE
<< N - 1);

void* get page address(struct buddy t buddy, uint64 t page num) {
if (buddy.array size == 0) {
return 0;
}
uint64 t max page = 1ULL << buddy.array size - 1;
if (page num < 0 || page num >= max page) {
return 0;

uint64 t address = (START PAGE + page num) << PAGE SIZE WIDTH;
return (void*)address;

int increase memory (struct buddy t buddy) {
if (buddy.array size >= N) {
return -1;

if (buddy.array size > 0 && buddy.buddy[buddy.array size - 1] != -1) {
// Whole space is free, Jjust double the size by merging
buddy.buddy [buddy.array size] = buddy.buddy[buddy.array size - 1];
buddy.buddy[buddy.array size - 1] = -1;
buddy.array size += 1;
} else {
// Buddy is not free, so merging is not possible, Jjust add a new
space
const int64 t SIGNED ONE = 1;
int64 t new block start = buddy.array size == 0 ? 0 : SIGNED ONE <<
buddy.array size - 1;
buddy.buddy[buddy.array size] = new block start;
buddy.array size += 1;
int64 t *block ptr = get page address (buddy, new block start);
if (block ptr == 0) {
return -2;
}
*block ptr = -1;

return 0;

373

