

1/3

Rešenja prvog kolokvijuma iz Operativnih sistema 2
decembar 2025.

1. (10 poena) 5, 6, 7, 6, 7, 6, 5, 6, 5, 4

2. (10 poena)
class ReaderWriters {
public:
 ReaderWriters () {}
 const T* read () const;
 void write (const T&);

private:
 T data[2];
 int toRead = -1, toWrite = -1;
 Semaphore mutex = 1;
};

void ReaderWriters::write (const T& t) {
 mutex.wait();
 if (toWrite<0) toWrite = 0;
 data[toWrite] = t;
 mutex.signal();
}

const T* ReaderWriters::read (){
 mutex.wait();
 if (toWrite<0) { mutex.signal(); return 0; }
 toRead = toWrite;
 toWrite = 1 – toWrite;
 T* ret = &data[toRead];
 mutex.signal();
 return ret;
}

2/3

3. (10 poena)
public class ClientCalculateRPC extends Thread {
 private Service service;
 private boolean work = true;
 private boolean successful;

 public ClientCalculateRPC(Service service) {
 this.service = service;
 start();
 }

 public void setData(int[] data) throws Exception {
 service.sendMsg("SET_DATA#" + data.length);
 for (int value : data) {
 service.sendMsg(String.valueOf(value));
 }
 startMeasurement();
 service.receiveMsg();
 finishMeasurement();

 }

 private synchronized void startMeasurement() {
 successful = false;
 notify();
 }

 private synchronized void finishMeasurement() {
 successful = true;
 notify();
 }

 public int[] calculate() throws Exception {
 service.sendMsg("CALCULATE");
 startMeasurement();
 int len = Integer.parseInt(service.receiveMsg());
 int[] result = new int[len];
 for (int i = 0; i < len; i++) {
 result[i] = Integer.parseInt(service.receiveMsg());
 }
 finishMeasurement();
 return result;
 }

 public void stopWork() {
 work = false;
 service.stop();
 }

 public void run() {

3/3

 while (work) {
 synchronized (this) {
 try {
 wait();
 wait(10000);
 if (!successful) {
 System.out.println("Operation timed out");
 work = false;
 service.close();
 }

 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 }

 }

 }
}

